Evaluate
\frac{73}{12}\approx 6.083333333
Factor
\frac{73}{2 ^ {2} \cdot 3} = 6\frac{1}{12} = 6.083333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{60)}\phantom{1}\\60\overline{)365}\\\end{array}
Use the 1^{st} digit 3 from dividend 365
\begin{array}{l}\phantom{60)}0\phantom{2}\\60\overline{)365}\\\end{array}
Since 3 is less than 60, use the next digit 6 from dividend 365 and add 0 to the quotient
\begin{array}{l}\phantom{60)}0\phantom{3}\\60\overline{)365}\\\end{array}
Use the 2^{nd} digit 6 from dividend 365
\begin{array}{l}\phantom{60)}00\phantom{4}\\60\overline{)365}\\\end{array}
Since 36 is less than 60, use the next digit 5 from dividend 365 and add 0 to the quotient
\begin{array}{l}\phantom{60)}00\phantom{5}\\60\overline{)365}\\\end{array}
Use the 3^{rd} digit 5 from dividend 365
\begin{array}{l}\phantom{60)}006\phantom{6}\\60\overline{)365}\\\phantom{60)}\underline{\phantom{}360\phantom{}}\\\phantom{60)99}5\\\end{array}
Find closest multiple of 60 to 365. We see that 6 \times 60 = 360 is the nearest. Now subtract 360 from 365 to get reminder 5. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }5
Since 5 is less than 60, stop the division. The reminder is 5. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}