Evaluate
\frac{73}{30}\approx 2.433333333
Factor
\frac{73}{2 \cdot 3 \cdot 5} = 2\frac{13}{30} = 2.433333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{150)}\phantom{1}\\150\overline{)365}\\\end{array}
Use the 1^{st} digit 3 from dividend 365
\begin{array}{l}\phantom{150)}0\phantom{2}\\150\overline{)365}\\\end{array}
Since 3 is less than 150, use the next digit 6 from dividend 365 and add 0 to the quotient
\begin{array}{l}\phantom{150)}0\phantom{3}\\150\overline{)365}\\\end{array}
Use the 2^{nd} digit 6 from dividend 365
\begin{array}{l}\phantom{150)}00\phantom{4}\\150\overline{)365}\\\end{array}
Since 36 is less than 150, use the next digit 5 from dividend 365 and add 0 to the quotient
\begin{array}{l}\phantom{150)}00\phantom{5}\\150\overline{)365}\\\end{array}
Use the 3^{rd} digit 5 from dividend 365
\begin{array}{l}\phantom{150)}002\phantom{6}\\150\overline{)365}\\\phantom{150)}\underline{\phantom{}300\phantom{}}\\\phantom{150)9}65\\\end{array}
Find closest multiple of 150 to 365. We see that 2 \times 150 = 300 is the nearest. Now subtract 300 from 365 to get reminder 65. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }65
Since 65 is less than 150, stop the division. The reminder is 65. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}