Evaluate
4
Factor
2^{2}
Share
Copied to clipboard
\begin{array}{l}\phantom{91)}\phantom{1}\\91\overline{)364}\\\end{array}
Use the 1^{st} digit 3 from dividend 364
\begin{array}{l}\phantom{91)}0\phantom{2}\\91\overline{)364}\\\end{array}
Since 3 is less than 91, use the next digit 6 from dividend 364 and add 0 to the quotient
\begin{array}{l}\phantom{91)}0\phantom{3}\\91\overline{)364}\\\end{array}
Use the 2^{nd} digit 6 from dividend 364
\begin{array}{l}\phantom{91)}00\phantom{4}\\91\overline{)364}\\\end{array}
Since 36 is less than 91, use the next digit 4 from dividend 364 and add 0 to the quotient
\begin{array}{l}\phantom{91)}00\phantom{5}\\91\overline{)364}\\\end{array}
Use the 3^{rd} digit 4 from dividend 364
\begin{array}{l}\phantom{91)}004\phantom{6}\\91\overline{)364}\\\phantom{91)}\underline{\phantom{}364\phantom{}}\\\phantom{91)999}0\\\end{array}
Find closest multiple of 91 to 364. We see that 4 \times 91 = 364 is the nearest. Now subtract 364 from 364 to get reminder 0. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }0
Since 0 is less than 91, stop the division. The reminder is 0. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}