Evaluate
\frac{91}{12}\approx 7.583333333
Factor
\frac{7 \cdot 13}{2 ^ {2} \cdot 3} = 7\frac{7}{12} = 7.583333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{48)}\phantom{1}\\48\overline{)364}\\\end{array}
Use the 1^{st} digit 3 from dividend 364
\begin{array}{l}\phantom{48)}0\phantom{2}\\48\overline{)364}\\\end{array}
Since 3 is less than 48, use the next digit 6 from dividend 364 and add 0 to the quotient
\begin{array}{l}\phantom{48)}0\phantom{3}\\48\overline{)364}\\\end{array}
Use the 2^{nd} digit 6 from dividend 364
\begin{array}{l}\phantom{48)}00\phantom{4}\\48\overline{)364}\\\end{array}
Since 36 is less than 48, use the next digit 4 from dividend 364 and add 0 to the quotient
\begin{array}{l}\phantom{48)}00\phantom{5}\\48\overline{)364}\\\end{array}
Use the 3^{rd} digit 4 from dividend 364
\begin{array}{l}\phantom{48)}007\phantom{6}\\48\overline{)364}\\\phantom{48)}\underline{\phantom{}336\phantom{}}\\\phantom{48)9}28\\\end{array}
Find closest multiple of 48 to 364. We see that 7 \times 48 = 336 is the nearest. Now subtract 336 from 364 to get reminder 28. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }28
Since 28 is less than 48, stop the division. The reminder is 28. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}