Evaluate
\frac{121}{27}\approx 4.481481481
Factor
\frac{11 ^ {2}}{3 ^ {3}} = 4\frac{13}{27} = 4.481481481481482
Share
Copied to clipboard
\begin{array}{l}\phantom{81)}\phantom{1}\\81\overline{)363}\\\end{array}
Use the 1^{st} digit 3 from dividend 363
\begin{array}{l}\phantom{81)}0\phantom{2}\\81\overline{)363}\\\end{array}
Since 3 is less than 81, use the next digit 6 from dividend 363 and add 0 to the quotient
\begin{array}{l}\phantom{81)}0\phantom{3}\\81\overline{)363}\\\end{array}
Use the 2^{nd} digit 6 from dividend 363
\begin{array}{l}\phantom{81)}00\phantom{4}\\81\overline{)363}\\\end{array}
Since 36 is less than 81, use the next digit 3 from dividend 363 and add 0 to the quotient
\begin{array}{l}\phantom{81)}00\phantom{5}\\81\overline{)363}\\\end{array}
Use the 3^{rd} digit 3 from dividend 363
\begin{array}{l}\phantom{81)}004\phantom{6}\\81\overline{)363}\\\phantom{81)}\underline{\phantom{}324\phantom{}}\\\phantom{81)9}39\\\end{array}
Find closest multiple of 81 to 363. We see that 4 \times 81 = 324 is the nearest. Now subtract 324 from 363 to get reminder 39. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }39
Since 39 is less than 81, stop the division. The reminder is 39. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}