Evaluate
329891
Factor
329891
Share
Copied to clipboard
\begin{array}{l}\phantom{11)}\phantom{1}\\11\overline{)3628801}\\\end{array}
Use the 1^{st} digit 3 from dividend 3628801
\begin{array}{l}\phantom{11)}0\phantom{2}\\11\overline{)3628801}\\\end{array}
Since 3 is less than 11, use the next digit 6 from dividend 3628801 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0\phantom{3}\\11\overline{)3628801}\\\end{array}
Use the 2^{nd} digit 6 from dividend 3628801
\begin{array}{l}\phantom{11)}03\phantom{4}\\11\overline{)3628801}\\\phantom{11)}\underline{\phantom{}33\phantom{99999}}\\\phantom{11)9}3\\\end{array}
Find closest multiple of 11 to 36. We see that 3 \times 11 = 33 is the nearest. Now subtract 33 from 36 to get reminder 3. Add 3 to quotient.
\begin{array}{l}\phantom{11)}03\phantom{5}\\11\overline{)3628801}\\\phantom{11)}\underline{\phantom{}33\phantom{99999}}\\\phantom{11)9}32\\\end{array}
Use the 3^{rd} digit 2 from dividend 3628801
\begin{array}{l}\phantom{11)}032\phantom{6}\\11\overline{)3628801}\\\phantom{11)}\underline{\phantom{}33\phantom{99999}}\\\phantom{11)9}32\\\phantom{11)}\underline{\phantom{9}22\phantom{9999}}\\\phantom{11)9}10\\\end{array}
Find closest multiple of 11 to 32. We see that 2 \times 11 = 22 is the nearest. Now subtract 22 from 32 to get reminder 10. Add 2 to quotient.
\begin{array}{l}\phantom{11)}032\phantom{7}\\11\overline{)3628801}\\\phantom{11)}\underline{\phantom{}33\phantom{99999}}\\\phantom{11)9}32\\\phantom{11)}\underline{\phantom{9}22\phantom{9999}}\\\phantom{11)9}108\\\end{array}
Use the 4^{th} digit 8 from dividend 3628801
\begin{array}{l}\phantom{11)}0329\phantom{8}\\11\overline{)3628801}\\\phantom{11)}\underline{\phantom{}33\phantom{99999}}\\\phantom{11)9}32\\\phantom{11)}\underline{\phantom{9}22\phantom{9999}}\\\phantom{11)9}108\\\phantom{11)}\underline{\phantom{99}99\phantom{999}}\\\phantom{11)999}9\\\end{array}
Find closest multiple of 11 to 108. We see that 9 \times 11 = 99 is the nearest. Now subtract 99 from 108 to get reminder 9. Add 9 to quotient.
\begin{array}{l}\phantom{11)}0329\phantom{9}\\11\overline{)3628801}\\\phantom{11)}\underline{\phantom{}33\phantom{99999}}\\\phantom{11)9}32\\\phantom{11)}\underline{\phantom{9}22\phantom{9999}}\\\phantom{11)9}108\\\phantom{11)}\underline{\phantom{99}99\phantom{999}}\\\phantom{11)999}98\\\end{array}
Use the 5^{th} digit 8 from dividend 3628801
\begin{array}{l}\phantom{11)}03298\phantom{10}\\11\overline{)3628801}\\\phantom{11)}\underline{\phantom{}33\phantom{99999}}\\\phantom{11)9}32\\\phantom{11)}\underline{\phantom{9}22\phantom{9999}}\\\phantom{11)9}108\\\phantom{11)}\underline{\phantom{99}99\phantom{999}}\\\phantom{11)999}98\\\phantom{11)}\underline{\phantom{999}88\phantom{99}}\\\phantom{11)999}10\\\end{array}
Find closest multiple of 11 to 98. We see that 8 \times 11 = 88 is the nearest. Now subtract 88 from 98 to get reminder 10. Add 8 to quotient.
\begin{array}{l}\phantom{11)}03298\phantom{11}\\11\overline{)3628801}\\\phantom{11)}\underline{\phantom{}33\phantom{99999}}\\\phantom{11)9}32\\\phantom{11)}\underline{\phantom{9}22\phantom{9999}}\\\phantom{11)9}108\\\phantom{11)}\underline{\phantom{99}99\phantom{999}}\\\phantom{11)999}98\\\phantom{11)}\underline{\phantom{999}88\phantom{99}}\\\phantom{11)999}100\\\end{array}
Use the 6^{th} digit 0 from dividend 3628801
\begin{array}{l}\phantom{11)}032989\phantom{12}\\11\overline{)3628801}\\\phantom{11)}\underline{\phantom{}33\phantom{99999}}\\\phantom{11)9}32\\\phantom{11)}\underline{\phantom{9}22\phantom{9999}}\\\phantom{11)9}108\\\phantom{11)}\underline{\phantom{99}99\phantom{999}}\\\phantom{11)999}98\\\phantom{11)}\underline{\phantom{999}88\phantom{99}}\\\phantom{11)999}100\\\phantom{11)}\underline{\phantom{9999}99\phantom{9}}\\\phantom{11)99999}1\\\end{array}
Find closest multiple of 11 to 100. We see that 9 \times 11 = 99 is the nearest. Now subtract 99 from 100 to get reminder 1. Add 9 to quotient.
\begin{array}{l}\phantom{11)}032989\phantom{13}\\11\overline{)3628801}\\\phantom{11)}\underline{\phantom{}33\phantom{99999}}\\\phantom{11)9}32\\\phantom{11)}\underline{\phantom{9}22\phantom{9999}}\\\phantom{11)9}108\\\phantom{11)}\underline{\phantom{99}99\phantom{999}}\\\phantom{11)999}98\\\phantom{11)}\underline{\phantom{999}88\phantom{99}}\\\phantom{11)999}100\\\phantom{11)}\underline{\phantom{9999}99\phantom{9}}\\\phantom{11)99999}11\\\end{array}
Use the 7^{th} digit 1 from dividend 3628801
\begin{array}{l}\phantom{11)}0329891\phantom{14}\\11\overline{)3628801}\\\phantom{11)}\underline{\phantom{}33\phantom{99999}}\\\phantom{11)9}32\\\phantom{11)}\underline{\phantom{9}22\phantom{9999}}\\\phantom{11)9}108\\\phantom{11)}\underline{\phantom{99}99\phantom{999}}\\\phantom{11)999}98\\\phantom{11)}\underline{\phantom{999}88\phantom{99}}\\\phantom{11)999}100\\\phantom{11)}\underline{\phantom{9999}99\phantom{9}}\\\phantom{11)99999}11\\\phantom{11)}\underline{\phantom{99999}11\phantom{}}\\\phantom{11)9999999}0\\\end{array}
Find closest multiple of 11 to 11. We see that 1 \times 11 = 11 is the nearest. Now subtract 11 from 11 to get reminder 0. Add 1 to quotient.
\text{Quotient: }329891 \text{Reminder: }0
Since 0 is less than 11, stop the division. The reminder is 0. The topmost line 0329891 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 329891.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}