Solve for x
x=\frac{2ey}{1083}
y\neq 0
Solve for y
y=\frac{1083x}{2e}
x\neq 0
Graph
Share
Copied to clipboard
3\times 361x=\frac{2}{3}e\times 3y
Multiply both sides of the equation by 3y, the least common multiple of y,3.
1083x=\frac{2}{3}e\times 3y
Multiply 3 and 361 to get 1083.
1083x=2ey
Multiply \frac{2}{3} and 3 to get 2.
\frac{1083x}{1083}=\frac{2ey}{1083}
Divide both sides by 1083.
x=\frac{2ey}{1083}
Dividing by 1083 undoes the multiplication by 1083.
3\times 361x=\frac{2}{3}e\times 3y
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3y, the least common multiple of y,3.
1083x=\frac{2}{3}e\times 3y
Multiply 3 and 361 to get 1083.
1083x=2ey
Multiply \frac{2}{3} and 3 to get 2.
2ey=1083x
Swap sides so that all variable terms are on the left hand side.
\frac{2ey}{2e}=\frac{1083x}{2e}
Divide both sides by 2e.
y=\frac{1083x}{2e}
Dividing by 2e undoes the multiplication by 2e.
y=\frac{1083x}{2e}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}