Evaluate
\frac{10}{3}\approx 3.333333333
Factor
\frac{2 \cdot 5}{3} = 3\frac{1}{3} = 3.3333333333333335
Share
Copied to clipboard
\begin{array}{l}\phantom{1080)}\phantom{1}\\1080\overline{)3600}\\\end{array}
Use the 1^{st} digit 3 from dividend 3600
\begin{array}{l}\phantom{1080)}0\phantom{2}\\1080\overline{)3600}\\\end{array}
Since 3 is less than 1080, use the next digit 6 from dividend 3600 and add 0 to the quotient
\begin{array}{l}\phantom{1080)}0\phantom{3}\\1080\overline{)3600}\\\end{array}
Use the 2^{nd} digit 6 from dividend 3600
\begin{array}{l}\phantom{1080)}00\phantom{4}\\1080\overline{)3600}\\\end{array}
Since 36 is less than 1080, use the next digit 0 from dividend 3600 and add 0 to the quotient
\begin{array}{l}\phantom{1080)}00\phantom{5}\\1080\overline{)3600}\\\end{array}
Use the 3^{rd} digit 0 from dividend 3600
\begin{array}{l}\phantom{1080)}000\phantom{6}\\1080\overline{)3600}\\\end{array}
Since 360 is less than 1080, use the next digit 0 from dividend 3600 and add 0 to the quotient
\begin{array}{l}\phantom{1080)}000\phantom{7}\\1080\overline{)3600}\\\end{array}
Use the 4^{th} digit 0 from dividend 3600
\begin{array}{l}\phantom{1080)}0003\phantom{8}\\1080\overline{)3600}\\\phantom{1080)}\underline{\phantom{}3240\phantom{}}\\\phantom{1080)9}360\\\end{array}
Find closest multiple of 1080 to 3600. We see that 3 \times 1080 = 3240 is the nearest. Now subtract 3240 from 3600 to get reminder 360. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }360
Since 360 is less than 1080, stop the division. The reminder is 360. The topmost line 0003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}