Solve for x
x=10
x=0
Graph
Share
Copied to clipboard
360x-210x=15x^{2}
Subtract 210x from both sides.
150x=15x^{2}
Combine 360x and -210x to get 150x.
150x-15x^{2}=0
Subtract 15x^{2} from both sides.
x\left(150-15x\right)=0
Factor out x.
x=0 x=10
To find equation solutions, solve x=0 and 150-15x=0.
360x-210x=15x^{2}
Subtract 210x from both sides.
150x=15x^{2}
Combine 360x and -210x to get 150x.
150x-15x^{2}=0
Subtract 15x^{2} from both sides.
-15x^{2}+150x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-150±\sqrt{150^{2}}}{2\left(-15\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -15 for a, 150 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-150±150}{2\left(-15\right)}
Take the square root of 150^{2}.
x=\frac{-150±150}{-30}
Multiply 2 times -15.
x=\frac{0}{-30}
Now solve the equation x=\frac{-150±150}{-30} when ± is plus. Add -150 to 150.
x=0
Divide 0 by -30.
x=-\frac{300}{-30}
Now solve the equation x=\frac{-150±150}{-30} when ± is minus. Subtract 150 from -150.
x=10
Divide -300 by -30.
x=0 x=10
The equation is now solved.
360x-210x=15x^{2}
Subtract 210x from both sides.
150x=15x^{2}
Combine 360x and -210x to get 150x.
150x-15x^{2}=0
Subtract 15x^{2} from both sides.
-15x^{2}+150x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-15x^{2}+150x}{-15}=\frac{0}{-15}
Divide both sides by -15.
x^{2}+\frac{150}{-15}x=\frac{0}{-15}
Dividing by -15 undoes the multiplication by -15.
x^{2}-10x=\frac{0}{-15}
Divide 150 by -15.
x^{2}-10x=0
Divide 0 by -15.
x^{2}-10x+\left(-5\right)^{2}=\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=25
Square -5.
\left(x-5\right)^{2}=25
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{25}
Take the square root of both sides of the equation.
x-5=5 x-5=-5
Simplify.
x=10 x=0
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}