Evaluate
\frac{72}{11}\approx 6.545454545
Factor
\frac{2 ^ {3} \cdot 3 ^ {2}}{11} = 6\frac{6}{11} = 6.545454545454546
Share
Copied to clipboard
\begin{array}{l}\phantom{55)}\phantom{1}\\55\overline{)360}\\\end{array}
Use the 1^{st} digit 3 from dividend 360
\begin{array}{l}\phantom{55)}0\phantom{2}\\55\overline{)360}\\\end{array}
Since 3 is less than 55, use the next digit 6 from dividend 360 and add 0 to the quotient
\begin{array}{l}\phantom{55)}0\phantom{3}\\55\overline{)360}\\\end{array}
Use the 2^{nd} digit 6 from dividend 360
\begin{array}{l}\phantom{55)}00\phantom{4}\\55\overline{)360}\\\end{array}
Since 36 is less than 55, use the next digit 0 from dividend 360 and add 0 to the quotient
\begin{array}{l}\phantom{55)}00\phantom{5}\\55\overline{)360}\\\end{array}
Use the 3^{rd} digit 0 from dividend 360
\begin{array}{l}\phantom{55)}006\phantom{6}\\55\overline{)360}\\\phantom{55)}\underline{\phantom{}330\phantom{}}\\\phantom{55)9}30\\\end{array}
Find closest multiple of 55 to 360. We see that 6 \times 55 = 330 is the nearest. Now subtract 330 from 360 to get reminder 30. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }30
Since 30 is less than 55, stop the division. The reminder is 30. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}