Evaluate
8
Factor
2^{3}
Share
Copied to clipboard
\begin{array}{l}\phantom{45)}\phantom{1}\\45\overline{)360}\\\end{array}
Use the 1^{st} digit 3 from dividend 360
\begin{array}{l}\phantom{45)}0\phantom{2}\\45\overline{)360}\\\end{array}
Since 3 is less than 45, use the next digit 6 from dividend 360 and add 0 to the quotient
\begin{array}{l}\phantom{45)}0\phantom{3}\\45\overline{)360}\\\end{array}
Use the 2^{nd} digit 6 from dividend 360
\begin{array}{l}\phantom{45)}00\phantom{4}\\45\overline{)360}\\\end{array}
Since 36 is less than 45, use the next digit 0 from dividend 360 and add 0 to the quotient
\begin{array}{l}\phantom{45)}00\phantom{5}\\45\overline{)360}\\\end{array}
Use the 3^{rd} digit 0 from dividend 360
\begin{array}{l}\phantom{45)}008\phantom{6}\\45\overline{)360}\\\phantom{45)}\underline{\phantom{}360\phantom{}}\\\phantom{45)999}0\\\end{array}
Find closest multiple of 45 to 360. We see that 8 \times 45 = 360 is the nearest. Now subtract 360 from 360 to get reminder 0. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }0
Since 0 is less than 45, stop the division. The reminder is 0. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}