Evaluate
\frac{45}{32}=1.40625
Factor
\frac{3 ^ {2} \cdot 5}{2 ^ {5}} = 1\frac{13}{32} = 1.40625
Share
Copied to clipboard
\begin{array}{l}\phantom{256)}\phantom{1}\\256\overline{)360}\\\end{array}
Use the 1^{st} digit 3 from dividend 360
\begin{array}{l}\phantom{256)}0\phantom{2}\\256\overline{)360}\\\end{array}
Since 3 is less than 256, use the next digit 6 from dividend 360 and add 0 to the quotient
\begin{array}{l}\phantom{256)}0\phantom{3}\\256\overline{)360}\\\end{array}
Use the 2^{nd} digit 6 from dividend 360
\begin{array}{l}\phantom{256)}00\phantom{4}\\256\overline{)360}\\\end{array}
Since 36 is less than 256, use the next digit 0 from dividend 360 and add 0 to the quotient
\begin{array}{l}\phantom{256)}00\phantom{5}\\256\overline{)360}\\\end{array}
Use the 3^{rd} digit 0 from dividend 360
\begin{array}{l}\phantom{256)}001\phantom{6}\\256\overline{)360}\\\phantom{256)}\underline{\phantom{}256\phantom{}}\\\phantom{256)}104\\\end{array}
Find closest multiple of 256 to 360. We see that 1 \times 256 = 256 is the nearest. Now subtract 256 from 360 to get reminder 104. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }104
Since 104 is less than 256, stop the division. The reminder is 104. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}