Evaluate
\frac{8}{5}=1.6
Factor
\frac{2 ^ {3}}{5} = 1\frac{3}{5} = 1.6
Share
Copied to clipboard
\begin{array}{l}\phantom{225)}\phantom{1}\\225\overline{)360}\\\end{array}
Use the 1^{st} digit 3 from dividend 360
\begin{array}{l}\phantom{225)}0\phantom{2}\\225\overline{)360}\\\end{array}
Since 3 is less than 225, use the next digit 6 from dividend 360 and add 0 to the quotient
\begin{array}{l}\phantom{225)}0\phantom{3}\\225\overline{)360}\\\end{array}
Use the 2^{nd} digit 6 from dividend 360
\begin{array}{l}\phantom{225)}00\phantom{4}\\225\overline{)360}\\\end{array}
Since 36 is less than 225, use the next digit 0 from dividend 360 and add 0 to the quotient
\begin{array}{l}\phantom{225)}00\phantom{5}\\225\overline{)360}\\\end{array}
Use the 3^{rd} digit 0 from dividend 360
\begin{array}{l}\phantom{225)}001\phantom{6}\\225\overline{)360}\\\phantom{225)}\underline{\phantom{}225\phantom{}}\\\phantom{225)}135\\\end{array}
Find closest multiple of 225 to 360. We see that 1 \times 225 = 225 is the nearest. Now subtract 225 from 360 to get reminder 135. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }135
Since 135 is less than 225, stop the division. The reminder is 135. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}