Evaluate
\frac{180}{11}\approx 16.363636364
Factor
\frac{2 ^ {2} \cdot 3 ^ {2} \cdot 5}{11} = 16\frac{4}{11} = 16.363636363636363
Share
Copied to clipboard
\begin{array}{l}\phantom{22)}\phantom{1}\\22\overline{)360}\\\end{array}
Use the 1^{st} digit 3 from dividend 360
\begin{array}{l}\phantom{22)}0\phantom{2}\\22\overline{)360}\\\end{array}
Since 3 is less than 22, use the next digit 6 from dividend 360 and add 0 to the quotient
\begin{array}{l}\phantom{22)}0\phantom{3}\\22\overline{)360}\\\end{array}
Use the 2^{nd} digit 6 from dividend 360
\begin{array}{l}\phantom{22)}01\phantom{4}\\22\overline{)360}\\\phantom{22)}\underline{\phantom{}22\phantom{9}}\\\phantom{22)}14\\\end{array}
Find closest multiple of 22 to 36. We see that 1 \times 22 = 22 is the nearest. Now subtract 22 from 36 to get reminder 14. Add 1 to quotient.
\begin{array}{l}\phantom{22)}01\phantom{5}\\22\overline{)360}\\\phantom{22)}\underline{\phantom{}22\phantom{9}}\\\phantom{22)}140\\\end{array}
Use the 3^{rd} digit 0 from dividend 360
\begin{array}{l}\phantom{22)}016\phantom{6}\\22\overline{)360}\\\phantom{22)}\underline{\phantom{}22\phantom{9}}\\\phantom{22)}140\\\phantom{22)}\underline{\phantom{}132\phantom{}}\\\phantom{22)99}8\\\end{array}
Find closest multiple of 22 to 140. We see that 6 \times 22 = 132 is the nearest. Now subtract 132 from 140 to get reminder 8. Add 6 to quotient.
\text{Quotient: }16 \text{Reminder: }8
Since 8 is less than 22, stop the division. The reminder is 8. The topmost line 016 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}