Evaluate
\frac{5}{2}=2.5
Factor
\frac{5}{2} = 2\frac{1}{2} = 2.5
Share
Copied to clipboard
\begin{array}{l}\phantom{144)}\phantom{1}\\144\overline{)360}\\\end{array}
Use the 1^{st} digit 3 from dividend 360
\begin{array}{l}\phantom{144)}0\phantom{2}\\144\overline{)360}\\\end{array}
Since 3 is less than 144, use the next digit 6 from dividend 360 and add 0 to the quotient
\begin{array}{l}\phantom{144)}0\phantom{3}\\144\overline{)360}\\\end{array}
Use the 2^{nd} digit 6 from dividend 360
\begin{array}{l}\phantom{144)}00\phantom{4}\\144\overline{)360}\\\end{array}
Since 36 is less than 144, use the next digit 0 from dividend 360 and add 0 to the quotient
\begin{array}{l}\phantom{144)}00\phantom{5}\\144\overline{)360}\\\end{array}
Use the 3^{rd} digit 0 from dividend 360
\begin{array}{l}\phantom{144)}002\phantom{6}\\144\overline{)360}\\\phantom{144)}\underline{\phantom{}288\phantom{}}\\\phantom{144)9}72\\\end{array}
Find closest multiple of 144 to 360. We see that 2 \times 144 = 288 is the nearest. Now subtract 288 from 360 to get reminder 72. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }72
Since 72 is less than 144, stop the division. The reminder is 72. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}