Evaluate
\frac{360}{13}\approx 27.692307692
Factor
\frac{2 ^ {3} \cdot 3 ^ {2} \cdot 5}{13} = 27\frac{9}{13} = 27.692307692307693
Share
Copied to clipboard
\begin{array}{l}\phantom{13)}\phantom{1}\\13\overline{)360}\\\end{array}
Use the 1^{st} digit 3 from dividend 360
\begin{array}{l}\phantom{13)}0\phantom{2}\\13\overline{)360}\\\end{array}
Since 3 is less than 13, use the next digit 6 from dividend 360 and add 0 to the quotient
\begin{array}{l}\phantom{13)}0\phantom{3}\\13\overline{)360}\\\end{array}
Use the 2^{nd} digit 6 from dividend 360
\begin{array}{l}\phantom{13)}02\phantom{4}\\13\overline{)360}\\\phantom{13)}\underline{\phantom{}26\phantom{9}}\\\phantom{13)}10\\\end{array}
Find closest multiple of 13 to 36. We see that 2 \times 13 = 26 is the nearest. Now subtract 26 from 36 to get reminder 10. Add 2 to quotient.
\begin{array}{l}\phantom{13)}02\phantom{5}\\13\overline{)360}\\\phantom{13)}\underline{\phantom{}26\phantom{9}}\\\phantom{13)}100\\\end{array}
Use the 3^{rd} digit 0 from dividend 360
\begin{array}{l}\phantom{13)}027\phantom{6}\\13\overline{)360}\\\phantom{13)}\underline{\phantom{}26\phantom{9}}\\\phantom{13)}100\\\phantom{13)}\underline{\phantom{9}91\phantom{}}\\\phantom{13)99}9\\\end{array}
Find closest multiple of 13 to 100. We see that 7 \times 13 = 91 is the nearest. Now subtract 91 from 100 to get reminder 9. Add 7 to quotient.
\text{Quotient: }27 \text{Reminder: }9
Since 9 is less than 13, stop the division. The reminder is 9. The topmost line 027 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 27.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}