Evaluate
\frac{72}{19}\approx 3.789473684
Factor
\frac{2 ^ {3} \cdot 3 ^ {2}}{19} = 3\frac{15}{19} = 3.789473684210526
Share
Copied to clipboard
\begin{array}{l}\phantom{95)}\phantom{1}\\95\overline{)360}\\\end{array}
Use the 1^{st} digit 3 from dividend 360
\begin{array}{l}\phantom{95)}0\phantom{2}\\95\overline{)360}\\\end{array}
Since 3 is less than 95, use the next digit 6 from dividend 360 and add 0 to the quotient
\begin{array}{l}\phantom{95)}0\phantom{3}\\95\overline{)360}\\\end{array}
Use the 2^{nd} digit 6 from dividend 360
\begin{array}{l}\phantom{95)}00\phantom{4}\\95\overline{)360}\\\end{array}
Since 36 is less than 95, use the next digit 0 from dividend 360 and add 0 to the quotient
\begin{array}{l}\phantom{95)}00\phantom{5}\\95\overline{)360}\\\end{array}
Use the 3^{rd} digit 0 from dividend 360
\begin{array}{l}\phantom{95)}003\phantom{6}\\95\overline{)360}\\\phantom{95)}\underline{\phantom{}285\phantom{}}\\\phantom{95)9}75\\\end{array}
Find closest multiple of 95 to 360. We see that 3 \times 95 = 285 is the nearest. Now subtract 285 from 360 to get reminder 75. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }75
Since 75 is less than 95, stop the division. The reminder is 75. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}