Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

36=2x^{2}+14x+12
Use the distributive property to multiply 2x+12 by x+1 and combine like terms.
2x^{2}+14x+12=36
Swap sides so that all variable terms are on the left hand side.
2x^{2}+14x+12-36=0
Subtract 36 from both sides.
2x^{2}+14x-24=0
Subtract 36 from 12 to get -24.
x=\frac{-14±\sqrt{14^{2}-4\times 2\left(-24\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 14 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\times 2\left(-24\right)}}{2\times 2}
Square 14.
x=\frac{-14±\sqrt{196-8\left(-24\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-14±\sqrt{196+192}}{2\times 2}
Multiply -8 times -24.
x=\frac{-14±\sqrt{388}}{2\times 2}
Add 196 to 192.
x=\frac{-14±2\sqrt{97}}{2\times 2}
Take the square root of 388.
x=\frac{-14±2\sqrt{97}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{97}-14}{4}
Now solve the equation x=\frac{-14±2\sqrt{97}}{4} when ± is plus. Add -14 to 2\sqrt{97}.
x=\frac{\sqrt{97}-7}{2}
Divide -14+2\sqrt{97} by 4.
x=\frac{-2\sqrt{97}-14}{4}
Now solve the equation x=\frac{-14±2\sqrt{97}}{4} when ± is minus. Subtract 2\sqrt{97} from -14.
x=\frac{-\sqrt{97}-7}{2}
Divide -14-2\sqrt{97} by 4.
x=\frac{\sqrt{97}-7}{2} x=\frac{-\sqrt{97}-7}{2}
The equation is now solved.
36=2x^{2}+14x+12
Use the distributive property to multiply 2x+12 by x+1 and combine like terms.
2x^{2}+14x+12=36
Swap sides so that all variable terms are on the left hand side.
2x^{2}+14x=36-12
Subtract 12 from both sides.
2x^{2}+14x=24
Subtract 12 from 36 to get 24.
\frac{2x^{2}+14x}{2}=\frac{24}{2}
Divide both sides by 2.
x^{2}+\frac{14}{2}x=\frac{24}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+7x=\frac{24}{2}
Divide 14 by 2.
x^{2}+7x=12
Divide 24 by 2.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=12+\left(\frac{7}{2}\right)^{2}
Divide 7, the coefficient of the x term, by 2 to get \frac{7}{2}. Then add the square of \frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+7x+\frac{49}{4}=12+\frac{49}{4}
Square \frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+7x+\frac{49}{4}=\frac{97}{4}
Add 12 to \frac{49}{4}.
\left(x+\frac{7}{2}\right)^{2}=\frac{97}{4}
Factor x^{2}+7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{97}{4}}
Take the square root of both sides of the equation.
x+\frac{7}{2}=\frac{\sqrt{97}}{2} x+\frac{7}{2}=-\frac{\sqrt{97}}{2}
Simplify.
x=\frac{\sqrt{97}-7}{2} x=\frac{-\sqrt{97}-7}{2}
Subtract \frac{7}{2} from both sides of the equation.