Solve for y
y = \frac{7}{6} = 1\frac{1}{6} \approx 1.166666667
y = -\frac{7}{6} = -1\frac{1}{6} \approx -1.166666667
Graph
Share
Copied to clipboard
\left(6y-7\right)\left(6y+7\right)=0
Consider 36y^{2}-49. Rewrite 36y^{2}-49 as \left(6y\right)^{2}-7^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
y=\frac{7}{6} y=-\frac{7}{6}
To find equation solutions, solve 6y-7=0 and 6y+7=0.
36y^{2}=49
Add 49 to both sides. Anything plus zero gives itself.
y^{2}=\frac{49}{36}
Divide both sides by 36.
y=\frac{7}{6} y=-\frac{7}{6}
Take the square root of both sides of the equation.
36y^{2}-49=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
y=\frac{0±\sqrt{0^{2}-4\times 36\left(-49\right)}}{2\times 36}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 36 for a, 0 for b, and -49 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 36\left(-49\right)}}{2\times 36}
Square 0.
y=\frac{0±\sqrt{-144\left(-49\right)}}{2\times 36}
Multiply -4 times 36.
y=\frac{0±\sqrt{7056}}{2\times 36}
Multiply -144 times -49.
y=\frac{0±84}{2\times 36}
Take the square root of 7056.
y=\frac{0±84}{72}
Multiply 2 times 36.
y=\frac{7}{6}
Now solve the equation y=\frac{0±84}{72} when ± is plus. Reduce the fraction \frac{84}{72} to lowest terms by extracting and canceling out 12.
y=-\frac{7}{6}
Now solve the equation y=\frac{0±84}{72} when ± is minus. Reduce the fraction \frac{-84}{72} to lowest terms by extracting and canceling out 12.
y=\frac{7}{6} y=-\frac{7}{6}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}