Solve for x
x=-\frac{2p^{2}}{18-13p}
p\neq \frac{18}{13}
Solve for p (complex solution)
p=\frac{\sqrt{x\left(169x-144\right)}+13x}{4}
p=\frac{-\sqrt{x\left(169x-144\right)}+13x}{4}
Solve for p
p=\frac{\sqrt{x\left(169x-144\right)}+13x}{4}
p=\frac{-\sqrt{x\left(169x-144\right)}+13x}{4}\text{, }x\geq \frac{144}{169}\text{ or }x\leq 0
Graph
Share
Copied to clipboard
36x-24px+4p^{2}-2px=0
Subtract 2px from both sides.
36x-26px+4p^{2}=0
Combine -24px and -2px to get -26px.
36x-26px=-4p^{2}
Subtract 4p^{2} from both sides. Anything subtracted from zero gives its negation.
\left(36-26p\right)x=-4p^{2}
Combine all terms containing x.
\frac{\left(36-26p\right)x}{36-26p}=-\frac{4p^{2}}{36-26p}
Divide both sides by 36-26p.
x=-\frac{4p^{2}}{36-26p}
Dividing by 36-26p undoes the multiplication by 36-26p.
x=-\frac{2p^{2}}{18-13p}
Divide -4p^{2} by 36-26p.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}