Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(6x-7\right)\left(6x+7\right)=0
Consider 36x^{2}-49. Rewrite 36x^{2}-49 as \left(6x\right)^{2}-7^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{7}{6} x=-\frac{7}{6}
To find equation solutions, solve 6x-7=0 and 6x+7=0.
36x^{2}=49
Add 49 to both sides. Anything plus zero gives itself.
x^{2}=\frac{49}{36}
Divide both sides by 36.
x=\frac{7}{6} x=-\frac{7}{6}
Take the square root of both sides of the equation.
36x^{2}-49=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 36\left(-49\right)}}{2\times 36}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 36 for a, 0 for b, and -49 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 36\left(-49\right)}}{2\times 36}
Square 0.
x=\frac{0±\sqrt{-144\left(-49\right)}}{2\times 36}
Multiply -4 times 36.
x=\frac{0±\sqrt{7056}}{2\times 36}
Multiply -144 times -49.
x=\frac{0±84}{2\times 36}
Take the square root of 7056.
x=\frac{0±84}{72}
Multiply 2 times 36.
x=\frac{7}{6}
Now solve the equation x=\frac{0±84}{72} when ± is plus. Reduce the fraction \frac{84}{72} to lowest terms by extracting and canceling out 12.
x=-\frac{7}{6}
Now solve the equation x=\frac{0±84}{72} when ± is minus. Reduce the fraction \frac{-84}{72} to lowest terms by extracting and canceling out 12.
x=\frac{7}{6} x=-\frac{7}{6}
The equation is now solved.