Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

45x^{2}=25
Combine 36x^{2} and 9x^{2} to get 45x^{2}.
x^{2}=\frac{25}{45}
Divide both sides by 45.
x^{2}=\frac{5}{9}
Reduce the fraction \frac{25}{45} to lowest terms by extracting and canceling out 5.
x=\frac{\sqrt{5}}{3} x=-\frac{\sqrt{5}}{3}
Take the square root of both sides of the equation.
45x^{2}=25
Combine 36x^{2} and 9x^{2} to get 45x^{2}.
45x^{2}-25=0
Subtract 25 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 45\left(-25\right)}}{2\times 45}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 45 for a, 0 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 45\left(-25\right)}}{2\times 45}
Square 0.
x=\frac{0±\sqrt{-180\left(-25\right)}}{2\times 45}
Multiply -4 times 45.
x=\frac{0±\sqrt{4500}}{2\times 45}
Multiply -180 times -25.
x=\frac{0±30\sqrt{5}}{2\times 45}
Take the square root of 4500.
x=\frac{0±30\sqrt{5}}{90}
Multiply 2 times 45.
x=\frac{\sqrt{5}}{3}
Now solve the equation x=\frac{0±30\sqrt{5}}{90} when ± is plus.
x=-\frac{\sqrt{5}}{3}
Now solve the equation x=\frac{0±30\sqrt{5}}{90} when ± is minus.
x=\frac{\sqrt{5}}{3} x=-\frac{\sqrt{5}}{3}
The equation is now solved.