Factor
4\left(3-t\right)\left(t-6\right)
Evaluate
4\left(3-t\right)\left(t-6\right)
Share
Copied to clipboard
4\left(9t-t^{2}-18\right)
Factor out 4.
-t^{2}+9t-18
Consider 9t-t^{2}-18. Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=9 ab=-\left(-18\right)=18
Factor the expression by grouping. First, the expression needs to be rewritten as -t^{2}+at+bt-18. To find a and b, set up a system to be solved.
1,18 2,9 3,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 18.
1+18=19 2+9=11 3+6=9
Calculate the sum for each pair.
a=6 b=3
The solution is the pair that gives sum 9.
\left(-t^{2}+6t\right)+\left(3t-18\right)
Rewrite -t^{2}+9t-18 as \left(-t^{2}+6t\right)+\left(3t-18\right).
-t\left(t-6\right)+3\left(t-6\right)
Factor out -t in the first and 3 in the second group.
\left(t-6\right)\left(-t+3\right)
Factor out common term t-6 by using distributive property.
4\left(t-6\right)\left(-t+3\right)
Rewrite the complete factored expression.
-4t^{2}+36t-72=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-36±\sqrt{36^{2}-4\left(-4\right)\left(-72\right)}}{2\left(-4\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-36±\sqrt{1296-4\left(-4\right)\left(-72\right)}}{2\left(-4\right)}
Square 36.
t=\frac{-36±\sqrt{1296+16\left(-72\right)}}{2\left(-4\right)}
Multiply -4 times -4.
t=\frac{-36±\sqrt{1296-1152}}{2\left(-4\right)}
Multiply 16 times -72.
t=\frac{-36±\sqrt{144}}{2\left(-4\right)}
Add 1296 to -1152.
t=\frac{-36±12}{2\left(-4\right)}
Take the square root of 144.
t=\frac{-36±12}{-8}
Multiply 2 times -4.
t=-\frac{24}{-8}
Now solve the equation t=\frac{-36±12}{-8} when ± is plus. Add -36 to 12.
t=3
Divide -24 by -8.
t=-\frac{48}{-8}
Now solve the equation t=\frac{-36±12}{-8} when ± is minus. Subtract 12 from -36.
t=6
Divide -48 by -8.
-4t^{2}+36t-72=-4\left(t-3\right)\left(t-6\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3 for x_{1} and 6 for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}