Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

36a^{2}-36\left(a+2\right)>0
Multiply 4 and 9 to get 36.
36a^{2}-36a-72>0
Use the distributive property to multiply -36 by a+2.
36a^{2}-36a-72=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 36\left(-72\right)}}{2\times 36}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 36 for a, -36 for b, and -72 for c in the quadratic formula.
a=\frac{36±108}{72}
Do the calculations.
a=2 a=-1
Solve the equation a=\frac{36±108}{72} when ± is plus and when ± is minus.
36\left(a-2\right)\left(a+1\right)>0
Rewrite the inequality by using the obtained solutions.
a-2<0 a+1<0
For the product to be positive, a-2 and a+1 have to be both negative or both positive. Consider the case when a-2 and a+1 are both negative.
a<-1
The solution satisfying both inequalities is a<-1.
a+1>0 a-2>0
Consider the case when a-2 and a+1 are both positive.
a>2
The solution satisfying both inequalities is a>2.
a<-1\text{; }a>2
The final solution is the union of the obtained solutions.