Solve for a
a\in \begin{bmatrix}-\frac{2\sqrt{5}}{5},\frac{2\sqrt{5}}{5}\end{bmatrix}
Share
Copied to clipboard
36-20\left(a^{2}+1\right)\geq 0
Multiply 4 and 5 to get 20.
36-20a^{2}-20\geq 0
Use the distributive property to multiply -20 by a^{2}+1.
16-20a^{2}\geq 0
Subtract 20 from 36 to get 16.
-16+20a^{2}\leq 0
Multiply the inequality by -1 to make the coefficient of the highest power in 16-20a^{2} positive. Since -1 is negative, the inequality direction is changed.
a^{2}\leq \frac{4}{5}
Add \frac{4}{5} to both sides.
a^{2}\leq \left(\frac{2\sqrt{5}}{5}\right)^{2}
Calculate the square root of \frac{4}{5} and get \frac{2\sqrt{5}}{5}. Rewrite \frac{4}{5} as \left(\frac{2\sqrt{5}}{5}\right)^{2}.
|a|\leq \frac{2\sqrt{5}}{5}
Inequality holds for |a|\leq \frac{2\sqrt{5}}{5}.
a\in \begin{bmatrix}-\frac{2\sqrt{5}}{5},\frac{2\sqrt{5}}{5}\end{bmatrix}
Rewrite |a|\leq \frac{2\sqrt{5}}{5} as a\in \left[-\frac{2\sqrt{5}}{5},\frac{2\sqrt{5}}{5}\right].
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}