Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

18\left(2x^{2}-3x\right)
Factor out 18.
x\left(2x-3\right)
Consider 2x^{2}-3x. Factor out x.
18x\left(2x-3\right)
Rewrite the complete factored expression.
36x^{2}-54x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-54\right)±\sqrt{\left(-54\right)^{2}}}{2\times 36}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-54\right)±54}{2\times 36}
Take the square root of \left(-54\right)^{2}.
x=\frac{54±54}{2\times 36}
The opposite of -54 is 54.
x=\frac{54±54}{72}
Multiply 2 times 36.
x=\frac{108}{72}
Now solve the equation x=\frac{54±54}{72} when ± is plus. Add 54 to 54.
x=\frac{3}{2}
Reduce the fraction \frac{108}{72} to lowest terms by extracting and canceling out 36.
x=\frac{0}{72}
Now solve the equation x=\frac{54±54}{72} when ± is minus. Subtract 54 from 54.
x=0
Divide 0 by 72.
36x^{2}-54x=36\left(x-\frac{3}{2}\right)x
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{2} for x_{1} and 0 for x_{2}.
36x^{2}-54x=36\times \frac{2x-3}{2}x
Subtract \frac{3}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
36x^{2}-54x=18\left(2x-3\right)x
Cancel out 2, the greatest common factor in 36 and 2.