Solve for x
x=\frac{\sqrt{17}-9}{8}\approx -0.609611797
x=\frac{-\sqrt{17}-9}{8}\approx -1.640388203
Graph
Share
Copied to clipboard
36x^{2}+81x+36=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-81±\sqrt{81^{2}-4\times 36\times 36}}{2\times 36}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 36 for a, 81 for b, and 36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-81±\sqrt{6561-4\times 36\times 36}}{2\times 36}
Square 81.
x=\frac{-81±\sqrt{6561-144\times 36}}{2\times 36}
Multiply -4 times 36.
x=\frac{-81±\sqrt{6561-5184}}{2\times 36}
Multiply -144 times 36.
x=\frac{-81±\sqrt{1377}}{2\times 36}
Add 6561 to -5184.
x=\frac{-81±9\sqrt{17}}{2\times 36}
Take the square root of 1377.
x=\frac{-81±9\sqrt{17}}{72}
Multiply 2 times 36.
x=\frac{9\sqrt{17}-81}{72}
Now solve the equation x=\frac{-81±9\sqrt{17}}{72} when ± is plus. Add -81 to 9\sqrt{17}.
x=\frac{\sqrt{17}-9}{8}
Divide -81+9\sqrt{17} by 72.
x=\frac{-9\sqrt{17}-81}{72}
Now solve the equation x=\frac{-81±9\sqrt{17}}{72} when ± is minus. Subtract 9\sqrt{17} from -81.
x=\frac{-\sqrt{17}-9}{8}
Divide -81-9\sqrt{17} by 72.
x=\frac{\sqrt{17}-9}{8} x=\frac{-\sqrt{17}-9}{8}
The equation is now solved.
36x^{2}+81x+36=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
36x^{2}+81x+36-36=-36
Subtract 36 from both sides of the equation.
36x^{2}+81x=-36
Subtracting 36 from itself leaves 0.
\frac{36x^{2}+81x}{36}=-\frac{36}{36}
Divide both sides by 36.
x^{2}+\frac{81}{36}x=-\frac{36}{36}
Dividing by 36 undoes the multiplication by 36.
x^{2}+\frac{9}{4}x=-\frac{36}{36}
Reduce the fraction \frac{81}{36} to lowest terms by extracting and canceling out 9.
x^{2}+\frac{9}{4}x=-1
Divide -36 by 36.
x^{2}+\frac{9}{4}x+\left(\frac{9}{8}\right)^{2}=-1+\left(\frac{9}{8}\right)^{2}
Divide \frac{9}{4}, the coefficient of the x term, by 2 to get \frac{9}{8}. Then add the square of \frac{9}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{9}{4}x+\frac{81}{64}=-1+\frac{81}{64}
Square \frac{9}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{9}{4}x+\frac{81}{64}=\frac{17}{64}
Add -1 to \frac{81}{64}.
\left(x+\frac{9}{8}\right)^{2}=\frac{17}{64}
Factor x^{2}+\frac{9}{4}x+\frac{81}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{8}\right)^{2}}=\sqrt{\frac{17}{64}}
Take the square root of both sides of the equation.
x+\frac{9}{8}=\frac{\sqrt{17}}{8} x+\frac{9}{8}=-\frac{\sqrt{17}}{8}
Simplify.
x=\frac{\sqrt{17}-9}{8} x=\frac{-\sqrt{17}-9}{8}
Subtract \frac{9}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}