Solve for x (complex solution)
x=\frac{-1+\sqrt{127}i}{24}\approx -0.041666667+0.469559486i
x=\frac{-\sqrt{127}i-1}{24}\approx -0.041666667-0.469559486i
Graph
Share
Copied to clipboard
36x^{2}+3x+8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\times 36\times 8}}{2\times 36}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 36 for a, 3 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 36\times 8}}{2\times 36}
Square 3.
x=\frac{-3±\sqrt{9-144\times 8}}{2\times 36}
Multiply -4 times 36.
x=\frac{-3±\sqrt{9-1152}}{2\times 36}
Multiply -144 times 8.
x=\frac{-3±\sqrt{-1143}}{2\times 36}
Add 9 to -1152.
x=\frac{-3±3\sqrt{127}i}{2\times 36}
Take the square root of -1143.
x=\frac{-3±3\sqrt{127}i}{72}
Multiply 2 times 36.
x=\frac{-3+3\sqrt{127}i}{72}
Now solve the equation x=\frac{-3±3\sqrt{127}i}{72} when ± is plus. Add -3 to 3i\sqrt{127}.
x=\frac{-1+\sqrt{127}i}{24}
Divide -3+3i\sqrt{127} by 72.
x=\frac{-3\sqrt{127}i-3}{72}
Now solve the equation x=\frac{-3±3\sqrt{127}i}{72} when ± is minus. Subtract 3i\sqrt{127} from -3.
x=\frac{-\sqrt{127}i-1}{24}
Divide -3-3i\sqrt{127} by 72.
x=\frac{-1+\sqrt{127}i}{24} x=\frac{-\sqrt{127}i-1}{24}
The equation is now solved.
36x^{2}+3x+8=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
36x^{2}+3x+8-8=-8
Subtract 8 from both sides of the equation.
36x^{2}+3x=-8
Subtracting 8 from itself leaves 0.
\frac{36x^{2}+3x}{36}=-\frac{8}{36}
Divide both sides by 36.
x^{2}+\frac{3}{36}x=-\frac{8}{36}
Dividing by 36 undoes the multiplication by 36.
x^{2}+\frac{1}{12}x=-\frac{8}{36}
Reduce the fraction \frac{3}{36} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{1}{12}x=-\frac{2}{9}
Reduce the fraction \frac{-8}{36} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{1}{12}x+\left(\frac{1}{24}\right)^{2}=-\frac{2}{9}+\left(\frac{1}{24}\right)^{2}
Divide \frac{1}{12}, the coefficient of the x term, by 2 to get \frac{1}{24}. Then add the square of \frac{1}{24} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{12}x+\frac{1}{576}=-\frac{2}{9}+\frac{1}{576}
Square \frac{1}{24} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{12}x+\frac{1}{576}=-\frac{127}{576}
Add -\frac{2}{9} to \frac{1}{576} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{24}\right)^{2}=-\frac{127}{576}
Factor x^{2}+\frac{1}{12}x+\frac{1}{576}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{24}\right)^{2}}=\sqrt{-\frac{127}{576}}
Take the square root of both sides of the equation.
x+\frac{1}{24}=\frac{\sqrt{127}i}{24} x+\frac{1}{24}=-\frac{\sqrt{127}i}{24}
Simplify.
x=\frac{-1+\sqrt{127}i}{24} x=\frac{-\sqrt{127}i-1}{24}
Subtract \frac{1}{24} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}