Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

36a^{4}-97b^{2}a^{2}+36b^{4}
Consider 36a^{4}-97a^{2}b^{2}+36b^{4} as a polynomial over variable a.
\left(4a^{2}-9b^{2}\right)\left(9a^{2}-4b^{2}\right)
Find one factor of the form ka^{m}+n, where ka^{m} divides the monomial with the highest power 36a^{4} and n divides the constant factor 36b^{4}. One such factor is 4a^{2}-9b^{2}. Factor the polynomial by dividing it by this factor.
\left(2a-3b\right)\left(2a+3b\right)
Consider 4a^{2}-9b^{2}. Rewrite 4a^{2}-9b^{2} as \left(2a\right)^{2}-\left(3b\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(3a-2b\right)\left(3a+2b\right)
Consider 9a^{2}-4b^{2}. Rewrite 9a^{2}-4b^{2} as \left(3a\right)^{2}-\left(2b\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(2a-3b\right)\left(2a+3b\right)\left(3a-2b\right)\left(3a+2b\right)
Rewrite the complete factored expression.