Solve for x (complex solution)
x=-\frac{\sqrt{139}i}{3}+3\approx 3-3.929942041i
x=\frac{\sqrt{139}i}{3}+3\approx 3+3.929942041i
Graph
Share
Copied to clipboard
36\times 4x+5=\left(3x+15\right)^{2}
Multiply 3x+15 and 3x+15 to get \left(3x+15\right)^{2}.
144x+5=\left(3x+15\right)^{2}
Multiply 36 and 4 to get 144.
144x+5=9x^{2}+90x+225
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+15\right)^{2}.
144x+5-9x^{2}=90x+225
Subtract 9x^{2} from both sides.
144x+5-9x^{2}-90x=225
Subtract 90x from both sides.
54x+5-9x^{2}=225
Combine 144x and -90x to get 54x.
54x+5-9x^{2}-225=0
Subtract 225 from both sides.
54x-220-9x^{2}=0
Subtract 225 from 5 to get -220.
-9x^{2}+54x-220=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-54±\sqrt{54^{2}-4\left(-9\right)\left(-220\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 54 for b, and -220 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-54±\sqrt{2916-4\left(-9\right)\left(-220\right)}}{2\left(-9\right)}
Square 54.
x=\frac{-54±\sqrt{2916+36\left(-220\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-54±\sqrt{2916-7920}}{2\left(-9\right)}
Multiply 36 times -220.
x=\frac{-54±\sqrt{-5004}}{2\left(-9\right)}
Add 2916 to -7920.
x=\frac{-54±6\sqrt{139}i}{2\left(-9\right)}
Take the square root of -5004.
x=\frac{-54±6\sqrt{139}i}{-18}
Multiply 2 times -9.
x=\frac{-54+6\sqrt{139}i}{-18}
Now solve the equation x=\frac{-54±6\sqrt{139}i}{-18} when ± is plus. Add -54 to 6i\sqrt{139}.
x=-\frac{\sqrt{139}i}{3}+3
Divide -54+6i\sqrt{139} by -18.
x=\frac{-6\sqrt{139}i-54}{-18}
Now solve the equation x=\frac{-54±6\sqrt{139}i}{-18} when ± is minus. Subtract 6i\sqrt{139} from -54.
x=\frac{\sqrt{139}i}{3}+3
Divide -54-6i\sqrt{139} by -18.
x=-\frac{\sqrt{139}i}{3}+3 x=\frac{\sqrt{139}i}{3}+3
The equation is now solved.
36\times 4x+5=\left(3x+15\right)^{2}
Multiply 3x+15 and 3x+15 to get \left(3x+15\right)^{2}.
144x+5=\left(3x+15\right)^{2}
Multiply 36 and 4 to get 144.
144x+5=9x^{2}+90x+225
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+15\right)^{2}.
144x+5-9x^{2}=90x+225
Subtract 9x^{2} from both sides.
144x+5-9x^{2}-90x=225
Subtract 90x from both sides.
54x+5-9x^{2}=225
Combine 144x and -90x to get 54x.
54x-9x^{2}=225-5
Subtract 5 from both sides.
54x-9x^{2}=220
Subtract 5 from 225 to get 220.
-9x^{2}+54x=220
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-9x^{2}+54x}{-9}=\frac{220}{-9}
Divide both sides by -9.
x^{2}+\frac{54}{-9}x=\frac{220}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}-6x=\frac{220}{-9}
Divide 54 by -9.
x^{2}-6x=-\frac{220}{9}
Divide 220 by -9.
x^{2}-6x+\left(-3\right)^{2}=-\frac{220}{9}+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-\frac{220}{9}+9
Square -3.
x^{2}-6x+9=-\frac{139}{9}
Add -\frac{220}{9} to 9.
\left(x-3\right)^{2}=-\frac{139}{9}
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{-\frac{139}{9}}
Take the square root of both sides of the equation.
x-3=\frac{\sqrt{139}i}{3} x-3=-\frac{\sqrt{139}i}{3}
Simplify.
x=\frac{\sqrt{139}i}{3}+3 x=-\frac{\sqrt{139}i}{3}+3
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}