Solve for A
\left\{\begin{matrix}A=-\frac{V}{4\Omega n^{2}}\text{, }&V\neq 0\text{ and }n\neq 0\text{ and }\Omega \neq 0\\A\neq 0\text{, }&\Omega =0\text{ and }V=0\text{ and }n\neq 0\end{matrix}\right.
Solve for V
V=-4A\Omega n^{2}
A\neq 0\text{ and }n\neq 0
Share
Copied to clipboard
36\Omega \times 3An^{2}=5V-32V
Variable A cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3An^{2}.
108\Omega An^{2}=5V-32V
Multiply 36 and 3 to get 108.
108\Omega An^{2}=-27V
Combine 5V and -32V to get -27V.
108\Omega n^{2}A=-27V
The equation is in standard form.
\frac{108\Omega n^{2}A}{108\Omega n^{2}}=-\frac{27V}{108\Omega n^{2}}
Divide both sides by 108\Omega n^{2}.
A=-\frac{27V}{108\Omega n^{2}}
Dividing by 108\Omega n^{2} undoes the multiplication by 108\Omega n^{2}.
A=-\frac{V}{4\Omega n^{2}}
Divide -27V by 108\Omega n^{2}.
A=-\frac{V}{4\Omega n^{2}}\text{, }A\neq 0
Variable A cannot be equal to 0.
36\Omega \times 3An^{2}=5V-32V
Multiply both sides of the equation by 3An^{2}.
108\Omega An^{2}=5V-32V
Multiply 36 and 3 to get 108.
108\Omega An^{2}=-27V
Combine 5V and -32V to get -27V.
-27V=108\Omega An^{2}
Swap sides so that all variable terms are on the left hand side.
-27V=108A\Omega n^{2}
The equation is in standard form.
\frac{-27V}{-27}=\frac{108A\Omega n^{2}}{-27}
Divide both sides by -27.
V=\frac{108A\Omega n^{2}}{-27}
Dividing by -27 undoes the multiplication by -27.
V=-4A\Omega n^{2}
Divide 108\Omega An^{2} by -27.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}