Solve for x
x = \frac{3 \sqrt{15}}{2} \approx 5.809475019
x = -\frac{3 \sqrt{15}}{2} \approx -5.809475019
Graph
Share
Copied to clipboard
36=\frac{9}{4}+x^{2}
Calculate \frac{3}{2} to the power of 2 and get \frac{9}{4}.
\frac{9}{4}+x^{2}=36
Swap sides so that all variable terms are on the left hand side.
x^{2}=36-\frac{9}{4}
Subtract \frac{9}{4} from both sides.
x^{2}=\frac{135}{4}
Subtract \frac{9}{4} from 36 to get \frac{135}{4}.
x=\frac{3\sqrt{15}}{2} x=-\frac{3\sqrt{15}}{2}
Take the square root of both sides of the equation.
36=\frac{9}{4}+x^{2}
Calculate \frac{3}{2} to the power of 2 and get \frac{9}{4}.
\frac{9}{4}+x^{2}=36
Swap sides so that all variable terms are on the left hand side.
\frac{9}{4}+x^{2}-36=0
Subtract 36 from both sides.
-\frac{135}{4}+x^{2}=0
Subtract 36 from \frac{9}{4} to get -\frac{135}{4}.
x^{2}-\frac{135}{4}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{135}{4}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{135}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{135}{4}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{135}}{2}
Multiply -4 times -\frac{135}{4}.
x=\frac{0±3\sqrt{15}}{2}
Take the square root of 135.
x=\frac{3\sqrt{15}}{2}
Now solve the equation x=\frac{0±3\sqrt{15}}{2} when ± is plus.
x=-\frac{3\sqrt{15}}{2}
Now solve the equation x=\frac{0±3\sqrt{15}}{2} when ± is minus.
x=\frac{3\sqrt{15}}{2} x=-\frac{3\sqrt{15}}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}