Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

36=\frac{9}{4}+x^{2}
Calculate \frac{3}{2} to the power of 2 and get \frac{9}{4}.
\frac{9}{4}+x^{2}=36
Swap sides so that all variable terms are on the left hand side.
x^{2}=36-\frac{9}{4}
Subtract \frac{9}{4} from both sides.
x^{2}=\frac{135}{4}
Subtract \frac{9}{4} from 36 to get \frac{135}{4}.
x=\frac{3\sqrt{15}}{2} x=-\frac{3\sqrt{15}}{2}
Take the square root of both sides of the equation.
36=\frac{9}{4}+x^{2}
Calculate \frac{3}{2} to the power of 2 and get \frac{9}{4}.
\frac{9}{4}+x^{2}=36
Swap sides so that all variable terms are on the left hand side.
\frac{9}{4}+x^{2}-36=0
Subtract 36 from both sides.
-\frac{135}{4}+x^{2}=0
Subtract 36 from \frac{9}{4} to get -\frac{135}{4}.
x^{2}-\frac{135}{4}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{135}{4}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{135}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{135}{4}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{135}}{2}
Multiply -4 times -\frac{135}{4}.
x=\frac{0±3\sqrt{15}}{2}
Take the square root of 135.
x=\frac{3\sqrt{15}}{2}
Now solve the equation x=\frac{0±3\sqrt{15}}{2} when ± is plus.
x=-\frac{3\sqrt{15}}{2}
Now solve the equation x=\frac{0±3\sqrt{15}}{2} when ± is minus.
x=\frac{3\sqrt{15}}{2} x=-\frac{3\sqrt{15}}{2}
The equation is now solved.