Evaluate
-20
Factor
-20
Share
Copied to clipboard
\frac{36}{\frac{25+1}{5}-7}+\left(\frac{1}{2}\right)^{3}\times 0\times 4^{2}
Multiply 5 and 5 to get 25.
\frac{36}{\frac{26}{5}-7}+\left(\frac{1}{2}\right)^{3}\times 0\times 4^{2}
Add 25 and 1 to get 26.
\frac{36}{\frac{26}{5}-\frac{35}{5}}+\left(\frac{1}{2}\right)^{3}\times 0\times 4^{2}
Convert 7 to fraction \frac{35}{5}.
\frac{36}{\frac{26-35}{5}}+\left(\frac{1}{2}\right)^{3}\times 0\times 4^{2}
Since \frac{26}{5} and \frac{35}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{36}{-\frac{9}{5}}+\left(\frac{1}{2}\right)^{3}\times 0\times 4^{2}
Subtract 35 from 26 to get -9.
36\left(-\frac{5}{9}\right)+\left(\frac{1}{2}\right)^{3}\times 0\times 4^{2}
Divide 36 by -\frac{9}{5} by multiplying 36 by the reciprocal of -\frac{9}{5}.
\frac{36\left(-5\right)}{9}+\left(\frac{1}{2}\right)^{3}\times 0\times 4^{2}
Express 36\left(-\frac{5}{9}\right) as a single fraction.
\frac{-180}{9}+\left(\frac{1}{2}\right)^{3}\times 0\times 4^{2}
Multiply 36 and -5 to get -180.
-20+\left(\frac{1}{2}\right)^{3}\times 0\times 4^{2}
Divide -180 by 9 to get -20.
-20+\frac{1}{8}\times 0\times 4^{2}
Calculate \frac{1}{2} to the power of 3 and get \frac{1}{8}.
-20+0\times 4^{2}
Multiply \frac{1}{8} and 0 to get 0.
-20+0\times 16
Calculate 4 to the power of 2 and get 16.
-20+0
Multiply 0 and 16 to get 0.
-20
Add -20 and 0 to get -20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}