36 + x ^ { 2 } = ( x + 2,4 ) ^ { 2 }
Solve for x
x=6,3
Graph
Share
Copied to clipboard
36+x^{2}=x^{2}+4,8x+5,76
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2,4\right)^{2}.
36+x^{2}-x^{2}=4,8x+5,76
Subtract x^{2} from both sides.
36=4,8x+5,76
Combine x^{2} and -x^{2} to get 0.
4,8x+5,76=36
Swap sides so that all variable terms are on the left hand side.
4,8x=36-5,76
Subtract 5,76 from both sides.
4,8x=30,24
Subtract 5,76 from 36 to get 30,24.
x=\frac{30,24}{4,8}
Divide both sides by 4,8.
x=\frac{3024}{480}
Expand \frac{30,24}{4,8} by multiplying both numerator and the denominator by 100.
x=\frac{63}{10}
Reduce the fraction \frac{3024}{480} to lowest terms by extracting and canceling out 48.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}