Factor
3\left(-r-2\right)\left(r-2\right)\left(7r^{2}+3\right)
Evaluate
36+75r^{2}-21r^{4}
Share
Copied to clipboard
3\left(12+25r^{2}-7r^{4}\right)
Factor out 3.
\left(7r^{2}+3\right)\left(-r^{2}+4\right)
Consider 12+25r^{2}-7r^{4}. Find one factor of the form kr^{m}+n, where kr^{m} divides the monomial with the highest power -7r^{4} and n divides the constant factor 12. One such factor is 7r^{2}+3. Factor the polynomial by dividing it by this factor.
\left(2-r\right)\left(2+r\right)
Consider -r^{2}+4. Rewrite -r^{2}+4 as 2^{2}-r^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(-r+2\right)\left(r+2\right)
Reorder the terms.
3\left(7r^{2}+3\right)\left(-r+2\right)\left(r+2\right)
Rewrite the complete factored expression. Polynomial 7r^{2}+3 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}