Solve for x
x=\frac{9\sqrt{351645}}{1190}+\frac{9}{2}\approx 8.984848442
x=-\frac{9\sqrt{351645}}{1190}+\frac{9}{2}\approx 0.015151558
Graph
Share
Copied to clipboard
26775x-2975x^{2}=405
Use the distributive property to multiply 35x by 765-85x.
26775x-2975x^{2}-405=0
Subtract 405 from both sides.
-2975x^{2}+26775x-405=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-26775±\sqrt{26775^{2}-4\left(-2975\right)\left(-405\right)}}{2\left(-2975\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2975 for a, 26775 for b, and -405 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-26775±\sqrt{716900625-4\left(-2975\right)\left(-405\right)}}{2\left(-2975\right)}
Square 26775.
x=\frac{-26775±\sqrt{716900625+11900\left(-405\right)}}{2\left(-2975\right)}
Multiply -4 times -2975.
x=\frac{-26775±\sqrt{716900625-4819500}}{2\left(-2975\right)}
Multiply 11900 times -405.
x=\frac{-26775±\sqrt{712081125}}{2\left(-2975\right)}
Add 716900625 to -4819500.
x=\frac{-26775±45\sqrt{351645}}{2\left(-2975\right)}
Take the square root of 712081125.
x=\frac{-26775±45\sqrt{351645}}{-5950}
Multiply 2 times -2975.
x=\frac{45\sqrt{351645}-26775}{-5950}
Now solve the equation x=\frac{-26775±45\sqrt{351645}}{-5950} when ± is plus. Add -26775 to 45\sqrt{351645}.
x=-\frac{9\sqrt{351645}}{1190}+\frac{9}{2}
Divide -26775+45\sqrt{351645} by -5950.
x=\frac{-45\sqrt{351645}-26775}{-5950}
Now solve the equation x=\frac{-26775±45\sqrt{351645}}{-5950} when ± is minus. Subtract 45\sqrt{351645} from -26775.
x=\frac{9\sqrt{351645}}{1190}+\frac{9}{2}
Divide -26775-45\sqrt{351645} by -5950.
x=-\frac{9\sqrt{351645}}{1190}+\frac{9}{2} x=\frac{9\sqrt{351645}}{1190}+\frac{9}{2}
The equation is now solved.
26775x-2975x^{2}=405
Use the distributive property to multiply 35x by 765-85x.
-2975x^{2}+26775x=405
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2975x^{2}+26775x}{-2975}=\frac{405}{-2975}
Divide both sides by -2975.
x^{2}+\frac{26775}{-2975}x=\frac{405}{-2975}
Dividing by -2975 undoes the multiplication by -2975.
x^{2}-9x=\frac{405}{-2975}
Divide 26775 by -2975.
x^{2}-9x=-\frac{81}{595}
Reduce the fraction \frac{405}{-2975} to lowest terms by extracting and canceling out 5.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-\frac{81}{595}+\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-9x+\frac{81}{4}=-\frac{81}{595}+\frac{81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-9x+\frac{81}{4}=\frac{47871}{2380}
Add -\frac{81}{595} to \frac{81}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{2}\right)^{2}=\frac{47871}{2380}
Factor x^{2}-9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{47871}{2380}}
Take the square root of both sides of the equation.
x-\frac{9}{2}=\frac{9\sqrt{351645}}{1190} x-\frac{9}{2}=-\frac{9\sqrt{351645}}{1190}
Simplify.
x=\frac{9\sqrt{351645}}{1190}+\frac{9}{2} x=-\frac{9\sqrt{351645}}{1190}+\frac{9}{2}
Add \frac{9}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}