Evaluate
\frac{359}{15}\approx 23.933333333
Factor
\frac{359}{3 \cdot 5} = 23\frac{14}{15} = 23.933333333333334
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)359}\\\end{array}
Use the 1^{st} digit 3 from dividend 359
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)359}\\\end{array}
Since 3 is less than 15, use the next digit 5 from dividend 359 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)359}\\\end{array}
Use the 2^{nd} digit 5 from dividend 359
\begin{array}{l}\phantom{15)}02\phantom{4}\\15\overline{)359}\\\phantom{15)}\underline{\phantom{}30\phantom{9}}\\\phantom{15)9}5\\\end{array}
Find closest multiple of 15 to 35. We see that 2 \times 15 = 30 is the nearest. Now subtract 30 from 35 to get reminder 5. Add 2 to quotient.
\begin{array}{l}\phantom{15)}02\phantom{5}\\15\overline{)359}\\\phantom{15)}\underline{\phantom{}30\phantom{9}}\\\phantom{15)9}59\\\end{array}
Use the 3^{rd} digit 9 from dividend 359
\begin{array}{l}\phantom{15)}023\phantom{6}\\15\overline{)359}\\\phantom{15)}\underline{\phantom{}30\phantom{9}}\\\phantom{15)9}59\\\phantom{15)}\underline{\phantom{9}45\phantom{}}\\\phantom{15)9}14\\\end{array}
Find closest multiple of 15 to 59. We see that 3 \times 15 = 45 is the nearest. Now subtract 45 from 59 to get reminder 14. Add 3 to quotient.
\text{Quotient: }23 \text{Reminder: }14
Since 14 is less than 15, stop the division. The reminder is 14. The topmost line 023 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 23.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}