Evaluate
2388
Factor
2^{2}\times 3\times 199
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)35820}\\\end{array}
Use the 1^{st} digit 3 from dividend 35820
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)35820}\\\end{array}
Since 3 is less than 15, use the next digit 5 from dividend 35820 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)35820}\\\end{array}
Use the 2^{nd} digit 5 from dividend 35820
\begin{array}{l}\phantom{15)}02\phantom{4}\\15\overline{)35820}\\\phantom{15)}\underline{\phantom{}30\phantom{999}}\\\phantom{15)9}5\\\end{array}
Find closest multiple of 15 to 35. We see that 2 \times 15 = 30 is the nearest. Now subtract 30 from 35 to get reminder 5. Add 2 to quotient.
\begin{array}{l}\phantom{15)}02\phantom{5}\\15\overline{)35820}\\\phantom{15)}\underline{\phantom{}30\phantom{999}}\\\phantom{15)9}58\\\end{array}
Use the 3^{rd} digit 8 from dividend 35820
\begin{array}{l}\phantom{15)}023\phantom{6}\\15\overline{)35820}\\\phantom{15)}\underline{\phantom{}30\phantom{999}}\\\phantom{15)9}58\\\phantom{15)}\underline{\phantom{9}45\phantom{99}}\\\phantom{15)9}13\\\end{array}
Find closest multiple of 15 to 58. We see that 3 \times 15 = 45 is the nearest. Now subtract 45 from 58 to get reminder 13. Add 3 to quotient.
\begin{array}{l}\phantom{15)}023\phantom{7}\\15\overline{)35820}\\\phantom{15)}\underline{\phantom{}30\phantom{999}}\\\phantom{15)9}58\\\phantom{15)}\underline{\phantom{9}45\phantom{99}}\\\phantom{15)9}132\\\end{array}
Use the 4^{th} digit 2 from dividend 35820
\begin{array}{l}\phantom{15)}0238\phantom{8}\\15\overline{)35820}\\\phantom{15)}\underline{\phantom{}30\phantom{999}}\\\phantom{15)9}58\\\phantom{15)}\underline{\phantom{9}45\phantom{99}}\\\phantom{15)9}132\\\phantom{15)}\underline{\phantom{9}120\phantom{9}}\\\phantom{15)99}12\\\end{array}
Find closest multiple of 15 to 132. We see that 8 \times 15 = 120 is the nearest. Now subtract 120 from 132 to get reminder 12. Add 8 to quotient.
\begin{array}{l}\phantom{15)}0238\phantom{9}\\15\overline{)35820}\\\phantom{15)}\underline{\phantom{}30\phantom{999}}\\\phantom{15)9}58\\\phantom{15)}\underline{\phantom{9}45\phantom{99}}\\\phantom{15)9}132\\\phantom{15)}\underline{\phantom{9}120\phantom{9}}\\\phantom{15)99}120\\\end{array}
Use the 5^{th} digit 0 from dividend 35820
\begin{array}{l}\phantom{15)}02388\phantom{10}\\15\overline{)35820}\\\phantom{15)}\underline{\phantom{}30\phantom{999}}\\\phantom{15)9}58\\\phantom{15)}\underline{\phantom{9}45\phantom{99}}\\\phantom{15)9}132\\\phantom{15)}\underline{\phantom{9}120\phantom{9}}\\\phantom{15)99}120\\\phantom{15)}\underline{\phantom{99}120\phantom{}}\\\phantom{15)99999}0\\\end{array}
Find closest multiple of 15 to 120. We see that 8 \times 15 = 120 is the nearest. Now subtract 120 from 120 to get reminder 0. Add 8 to quotient.
\text{Quotient: }2388 \text{Reminder: }0
Since 0 is less than 15, stop the division. The reminder is 0. The topmost line 02388 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2388.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}