Evaluate
\frac{179}{18}\approx 9.944444444
Factor
\frac{179}{2 \cdot 3 ^ {2}} = 9\frac{17}{18} = 9.944444444444445
Share
Copied to clipboard
\begin{array}{l}\phantom{36)}\phantom{1}\\36\overline{)358}\\\end{array}
Use the 1^{st} digit 3 from dividend 358
\begin{array}{l}\phantom{36)}0\phantom{2}\\36\overline{)358}\\\end{array}
Since 3 is less than 36, use the next digit 5 from dividend 358 and add 0 to the quotient
\begin{array}{l}\phantom{36)}0\phantom{3}\\36\overline{)358}\\\end{array}
Use the 2^{nd} digit 5 from dividend 358
\begin{array}{l}\phantom{36)}00\phantom{4}\\36\overline{)358}\\\end{array}
Since 35 is less than 36, use the next digit 8 from dividend 358 and add 0 to the quotient
\begin{array}{l}\phantom{36)}00\phantom{5}\\36\overline{)358}\\\end{array}
Use the 3^{rd} digit 8 from dividend 358
\begin{array}{l}\phantom{36)}009\phantom{6}\\36\overline{)358}\\\phantom{36)}\underline{\phantom{}324\phantom{}}\\\phantom{36)9}34\\\end{array}
Find closest multiple of 36 to 358. We see that 9 \times 36 = 324 is the nearest. Now subtract 324 from 358 to get reminder 34. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }34
Since 34 is less than 36, stop the division. The reminder is 34. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}