Solve for x
x=\frac{\sqrt{6682}}{18}-\frac{8}{9}\approx 3.652416737
x=-\frac{\sqrt{6682}}{18}-\frac{8}{9}\approx -5.430194515
Graph
Share
Copied to clipboard
\frac{357}{2}=x^{2}+4x\left(2x+4\right)
Divide both sides by 2.
\frac{357}{2}=x^{2}+8x^{2}+16x
Use the distributive property to multiply 4x by 2x+4.
\frac{357}{2}=9x^{2}+16x
Combine x^{2} and 8x^{2} to get 9x^{2}.
9x^{2}+16x=\frac{357}{2}
Swap sides so that all variable terms are on the left hand side.
9x^{2}+16x-\frac{357}{2}=0
Subtract \frac{357}{2} from both sides.
x=\frac{-16±\sqrt{16^{2}-4\times 9\left(-\frac{357}{2}\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 16 for b, and -\frac{357}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 9\left(-\frac{357}{2}\right)}}{2\times 9}
Square 16.
x=\frac{-16±\sqrt{256-36\left(-\frac{357}{2}\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-16±\sqrt{256+6426}}{2\times 9}
Multiply -36 times -\frac{357}{2}.
x=\frac{-16±\sqrt{6682}}{2\times 9}
Add 256 to 6426.
x=\frac{-16±\sqrt{6682}}{18}
Multiply 2 times 9.
x=\frac{\sqrt{6682}-16}{18}
Now solve the equation x=\frac{-16±\sqrt{6682}}{18} when ± is plus. Add -16 to \sqrt{6682}.
x=\frac{\sqrt{6682}}{18}-\frac{8}{9}
Divide -16+\sqrt{6682} by 18.
x=\frac{-\sqrt{6682}-16}{18}
Now solve the equation x=\frac{-16±\sqrt{6682}}{18} when ± is minus. Subtract \sqrt{6682} from -16.
x=-\frac{\sqrt{6682}}{18}-\frac{8}{9}
Divide -16-\sqrt{6682} by 18.
x=\frac{\sqrt{6682}}{18}-\frac{8}{9} x=-\frac{\sqrt{6682}}{18}-\frac{8}{9}
The equation is now solved.
\frac{357}{2}=x^{2}+4x\left(2x+4\right)
Divide both sides by 2.
\frac{357}{2}=x^{2}+8x^{2}+16x
Use the distributive property to multiply 4x by 2x+4.
\frac{357}{2}=9x^{2}+16x
Combine x^{2} and 8x^{2} to get 9x^{2}.
9x^{2}+16x=\frac{357}{2}
Swap sides so that all variable terms are on the left hand side.
\frac{9x^{2}+16x}{9}=\frac{\frac{357}{2}}{9}
Divide both sides by 9.
x^{2}+\frac{16}{9}x=\frac{\frac{357}{2}}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}+\frac{16}{9}x=\frac{119}{6}
Divide \frac{357}{2} by 9.
x^{2}+\frac{16}{9}x+\left(\frac{8}{9}\right)^{2}=\frac{119}{6}+\left(\frac{8}{9}\right)^{2}
Divide \frac{16}{9}, the coefficient of the x term, by 2 to get \frac{8}{9}. Then add the square of \frac{8}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{16}{9}x+\frac{64}{81}=\frac{119}{6}+\frac{64}{81}
Square \frac{8}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{16}{9}x+\frac{64}{81}=\frac{3341}{162}
Add \frac{119}{6} to \frac{64}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{8}{9}\right)^{2}=\frac{3341}{162}
Factor x^{2}+\frac{16}{9}x+\frac{64}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{8}{9}\right)^{2}}=\sqrt{\frac{3341}{162}}
Take the square root of both sides of the equation.
x+\frac{8}{9}=\frac{\sqrt{6682}}{18} x+\frac{8}{9}=-\frac{\sqrt{6682}}{18}
Simplify.
x=\frac{\sqrt{6682}}{18}-\frac{8}{9} x=-\frac{\sqrt{6682}}{18}-\frac{8}{9}
Subtract \frac{8}{9} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}