Evaluate
\frac{22}{3}\approx 7.333333333
Factor
\frac{2 \cdot 11}{3} = 7\frac{1}{3} = 7.333333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{48)}\phantom{1}\\48\overline{)352}\\\end{array}
Use the 1^{st} digit 3 from dividend 352
\begin{array}{l}\phantom{48)}0\phantom{2}\\48\overline{)352}\\\end{array}
Since 3 is less than 48, use the next digit 5 from dividend 352 and add 0 to the quotient
\begin{array}{l}\phantom{48)}0\phantom{3}\\48\overline{)352}\\\end{array}
Use the 2^{nd} digit 5 from dividend 352
\begin{array}{l}\phantom{48)}00\phantom{4}\\48\overline{)352}\\\end{array}
Since 35 is less than 48, use the next digit 2 from dividend 352 and add 0 to the quotient
\begin{array}{l}\phantom{48)}00\phantom{5}\\48\overline{)352}\\\end{array}
Use the 3^{rd} digit 2 from dividend 352
\begin{array}{l}\phantom{48)}007\phantom{6}\\48\overline{)352}\\\phantom{48)}\underline{\phantom{}336\phantom{}}\\\phantom{48)9}16\\\end{array}
Find closest multiple of 48 to 352. We see that 7 \times 48 = 336 is the nearest. Now subtract 336 from 352 to get reminder 16. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }16
Since 16 is less than 48, stop the division. The reminder is 16. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}