Evaluate
25568.75
Factor
\frac{4091 \cdot 5 ^ {2}}{2 ^ {2}} = 25568\frac{3}{4} = 25568.75
Share
Copied to clipboard
35000\left(1+\frac{25}{6}\times \frac{16}{100}\right)-12000\left(1+\frac{50}{1200}\times 10.73\right)-13000\left(1+\frac{50}{1200}\times 4.43\right)
Reduce the fraction \frac{50}{12} to lowest terms by extracting and canceling out 2.
35000\left(1+\frac{25}{6}\times \frac{4}{25}\right)-12000\left(1+\frac{50}{1200}\times 10.73\right)-13000\left(1+\frac{50}{1200}\times 4.43\right)
Reduce the fraction \frac{16}{100} to lowest terms by extracting and canceling out 4.
35000\left(1+\frac{25\times 4}{6\times 25}\right)-12000\left(1+\frac{50}{1200}\times 10.73\right)-13000\left(1+\frac{50}{1200}\times 4.43\right)
Multiply \frac{25}{6} times \frac{4}{25} by multiplying numerator times numerator and denominator times denominator.
35000\left(1+\frac{4}{6}\right)-12000\left(1+\frac{50}{1200}\times 10.73\right)-13000\left(1+\frac{50}{1200}\times 4.43\right)
Cancel out 25 in both numerator and denominator.
35000\left(1+\frac{2}{3}\right)-12000\left(1+\frac{50}{1200}\times 10.73\right)-13000\left(1+\frac{50}{1200}\times 4.43\right)
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
35000\left(\frac{3}{3}+\frac{2}{3}\right)-12000\left(1+\frac{50}{1200}\times 10.73\right)-13000\left(1+\frac{50}{1200}\times 4.43\right)
Convert 1 to fraction \frac{3}{3}.
35000\times \frac{3+2}{3}-12000\left(1+\frac{50}{1200}\times 10.73\right)-13000\left(1+\frac{50}{1200}\times 4.43\right)
Since \frac{3}{3} and \frac{2}{3} have the same denominator, add them by adding their numerators.
35000\times \frac{5}{3}-12000\left(1+\frac{50}{1200}\times 10.73\right)-13000\left(1+\frac{50}{1200}\times 4.43\right)
Add 3 and 2 to get 5.
\frac{35000\times 5}{3}-12000\left(1+\frac{50}{1200}\times 10.73\right)-13000\left(1+\frac{50}{1200}\times 4.43\right)
Express 35000\times \frac{5}{3} as a single fraction.
\frac{175000}{3}-12000\left(1+\frac{50}{1200}\times 10.73\right)-13000\left(1+\frac{50}{1200}\times 4.43\right)
Multiply 35000 and 5 to get 175000.
\frac{175000}{3}-12000\left(1+\frac{1}{24}\times 10.73\right)-13000\left(1+\frac{50}{1200}\times 4.43\right)
Reduce the fraction \frac{50}{1200} to lowest terms by extracting and canceling out 50.
\frac{175000}{3}-12000\left(1+\frac{1}{24}\times \frac{1073}{100}\right)-13000\left(1+\frac{50}{1200}\times 4.43\right)
Convert decimal number 10.73 to fraction \frac{1073}{100}.
\frac{175000}{3}-12000\left(1+\frac{1\times 1073}{24\times 100}\right)-13000\left(1+\frac{50}{1200}\times 4.43\right)
Multiply \frac{1}{24} times \frac{1073}{100} by multiplying numerator times numerator and denominator times denominator.
\frac{175000}{3}-12000\left(1+\frac{1073}{2400}\right)-13000\left(1+\frac{50}{1200}\times 4.43\right)
Do the multiplications in the fraction \frac{1\times 1073}{24\times 100}.
\frac{175000}{3}-12000\left(\frac{2400}{2400}+\frac{1073}{2400}\right)-13000\left(1+\frac{50}{1200}\times 4.43\right)
Convert 1 to fraction \frac{2400}{2400}.
\frac{175000}{3}-12000\times \frac{2400+1073}{2400}-13000\left(1+\frac{50}{1200}\times 4.43\right)
Since \frac{2400}{2400} and \frac{1073}{2400} have the same denominator, add them by adding their numerators.
\frac{175000}{3}-12000\times \frac{3473}{2400}-13000\left(1+\frac{50}{1200}\times 4.43\right)
Add 2400 and 1073 to get 3473.
\frac{175000}{3}-\frac{12000\times 3473}{2400}-13000\left(1+\frac{50}{1200}\times 4.43\right)
Express 12000\times \frac{3473}{2400} as a single fraction.
\frac{175000}{3}-\frac{41676000}{2400}-13000\left(1+\frac{50}{1200}\times 4.43\right)
Multiply 12000 and 3473 to get 41676000.
\frac{175000}{3}-17365-13000\left(1+\frac{50}{1200}\times 4.43\right)
Divide 41676000 by 2400 to get 17365.
\frac{175000}{3}-\frac{52095}{3}-13000\left(1+\frac{50}{1200}\times 4.43\right)
Convert 17365 to fraction \frac{52095}{3}.
\frac{175000-52095}{3}-13000\left(1+\frac{50}{1200}\times 4.43\right)
Since \frac{175000}{3} and \frac{52095}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{122905}{3}-13000\left(1+\frac{50}{1200}\times 4.43\right)
Subtract 52095 from 175000 to get 122905.
\frac{122905}{3}-13000\left(1+\frac{1}{24}\times 4.43\right)
Reduce the fraction \frac{50}{1200} to lowest terms by extracting and canceling out 50.
\frac{122905}{3}-13000\left(1+\frac{1}{24}\times \frac{443}{100}\right)
Convert decimal number 4.43 to fraction \frac{443}{100}.
\frac{122905}{3}-13000\left(1+\frac{1\times 443}{24\times 100}\right)
Multiply \frac{1}{24} times \frac{443}{100} by multiplying numerator times numerator and denominator times denominator.
\frac{122905}{3}-13000\left(1+\frac{443}{2400}\right)
Do the multiplications in the fraction \frac{1\times 443}{24\times 100}.
\frac{122905}{3}-13000\left(\frac{2400}{2400}+\frac{443}{2400}\right)
Convert 1 to fraction \frac{2400}{2400}.
\frac{122905}{3}-13000\times \frac{2400+443}{2400}
Since \frac{2400}{2400} and \frac{443}{2400} have the same denominator, add them by adding their numerators.
\frac{122905}{3}-13000\times \frac{2843}{2400}
Add 2400 and 443 to get 2843.
\frac{122905}{3}-\frac{13000\times 2843}{2400}
Express 13000\times \frac{2843}{2400} as a single fraction.
\frac{122905}{3}-\frac{36959000}{2400}
Multiply 13000 and 2843 to get 36959000.
\frac{122905}{3}-\frac{184795}{12}
Reduce the fraction \frac{36959000}{2400} to lowest terms by extracting and canceling out 200.
\frac{491620}{12}-\frac{184795}{12}
Least common multiple of 3 and 12 is 12. Convert \frac{122905}{3} and \frac{184795}{12} to fractions with denominator 12.
\frac{491620-184795}{12}
Since \frac{491620}{12} and \frac{184795}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{306825}{12}
Subtract 184795 from 491620 to get 306825.
\frac{102275}{4}
Reduce the fraction \frac{306825}{12} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}