Evaluate
\frac{350}{41}\approx 8.536585366
Factor
\frac{2 \cdot 5 ^ {2} \cdot 7}{41} = 8\frac{22}{41} = 8.536585365853659
Share
Copied to clipboard
\begin{array}{l}\phantom{41)}\phantom{1}\\41\overline{)350}\\\end{array}
Use the 1^{st} digit 3 from dividend 350
\begin{array}{l}\phantom{41)}0\phantom{2}\\41\overline{)350}\\\end{array}
Since 3 is less than 41, use the next digit 5 from dividend 350 and add 0 to the quotient
\begin{array}{l}\phantom{41)}0\phantom{3}\\41\overline{)350}\\\end{array}
Use the 2^{nd} digit 5 from dividend 350
\begin{array}{l}\phantom{41)}00\phantom{4}\\41\overline{)350}\\\end{array}
Since 35 is less than 41, use the next digit 0 from dividend 350 and add 0 to the quotient
\begin{array}{l}\phantom{41)}00\phantom{5}\\41\overline{)350}\\\end{array}
Use the 3^{rd} digit 0 from dividend 350
\begin{array}{l}\phantom{41)}008\phantom{6}\\41\overline{)350}\\\phantom{41)}\underline{\phantom{}328\phantom{}}\\\phantom{41)9}22\\\end{array}
Find closest multiple of 41 to 350. We see that 8 \times 41 = 328 is the nearest. Now subtract 328 from 350 to get reminder 22. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }22
Since 22 is less than 41, stop the division. The reminder is 22. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}