Evaluate
\frac{35}{24}\approx 1.458333333
Factor
\frac{5 \cdot 7}{2 ^ {3} \cdot 3} = 1\frac{11}{24} = 1.4583333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{240)}\phantom{1}\\240\overline{)350}\\\end{array}
Use the 1^{st} digit 3 from dividend 350
\begin{array}{l}\phantom{240)}0\phantom{2}\\240\overline{)350}\\\end{array}
Since 3 is less than 240, use the next digit 5 from dividend 350 and add 0 to the quotient
\begin{array}{l}\phantom{240)}0\phantom{3}\\240\overline{)350}\\\end{array}
Use the 2^{nd} digit 5 from dividend 350
\begin{array}{l}\phantom{240)}00\phantom{4}\\240\overline{)350}\\\end{array}
Since 35 is less than 240, use the next digit 0 from dividend 350 and add 0 to the quotient
\begin{array}{l}\phantom{240)}00\phantom{5}\\240\overline{)350}\\\end{array}
Use the 3^{rd} digit 0 from dividend 350
\begin{array}{l}\phantom{240)}001\phantom{6}\\240\overline{)350}\\\phantom{240)}\underline{\phantom{}240\phantom{}}\\\phantom{240)}110\\\end{array}
Find closest multiple of 240 to 350. We see that 1 \times 240 = 240 is the nearest. Now subtract 240 from 350 to get reminder 110. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }110
Since 110 is less than 240, stop the division. The reminder is 110. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}