Evaluate
\frac{175}{11}\approx 15.909090909
Factor
\frac{5 ^ {2} \cdot 7}{11} = 15\frac{10}{11} = 15.909090909090908
Share
Copied to clipboard
\begin{array}{l}\phantom{22)}\phantom{1}\\22\overline{)350}\\\end{array}
Use the 1^{st} digit 3 from dividend 350
\begin{array}{l}\phantom{22)}0\phantom{2}\\22\overline{)350}\\\end{array}
Since 3 is less than 22, use the next digit 5 from dividend 350 and add 0 to the quotient
\begin{array}{l}\phantom{22)}0\phantom{3}\\22\overline{)350}\\\end{array}
Use the 2^{nd} digit 5 from dividend 350
\begin{array}{l}\phantom{22)}01\phantom{4}\\22\overline{)350}\\\phantom{22)}\underline{\phantom{}22\phantom{9}}\\\phantom{22)}13\\\end{array}
Find closest multiple of 22 to 35. We see that 1 \times 22 = 22 is the nearest. Now subtract 22 from 35 to get reminder 13. Add 1 to quotient.
\begin{array}{l}\phantom{22)}01\phantom{5}\\22\overline{)350}\\\phantom{22)}\underline{\phantom{}22\phantom{9}}\\\phantom{22)}130\\\end{array}
Use the 3^{rd} digit 0 from dividend 350
\begin{array}{l}\phantom{22)}015\phantom{6}\\22\overline{)350}\\\phantom{22)}\underline{\phantom{}22\phantom{9}}\\\phantom{22)}130\\\phantom{22)}\underline{\phantom{}110\phantom{}}\\\phantom{22)9}20\\\end{array}
Find closest multiple of 22 to 130. We see that 5 \times 22 = 110 is the nearest. Now subtract 110 from 130 to get reminder 20. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }20
Since 20 is less than 22, stop the division. The reminder is 20. The topmost line 015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}