Evaluate
\frac{175}{9}\approx 19.444444444
Factor
\frac{5 ^ {2} \cdot 7}{3 ^ {2}} = 19\frac{4}{9} = 19.444444444444443
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)350}\\\end{array}
Use the 1^{st} digit 3 from dividend 350
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)350}\\\end{array}
Since 3 is less than 18, use the next digit 5 from dividend 350 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)350}\\\end{array}
Use the 2^{nd} digit 5 from dividend 350
\begin{array}{l}\phantom{18)}01\phantom{4}\\18\overline{)350}\\\phantom{18)}\underline{\phantom{}18\phantom{9}}\\\phantom{18)}17\\\end{array}
Find closest multiple of 18 to 35. We see that 1 \times 18 = 18 is the nearest. Now subtract 18 from 35 to get reminder 17. Add 1 to quotient.
\begin{array}{l}\phantom{18)}01\phantom{5}\\18\overline{)350}\\\phantom{18)}\underline{\phantom{}18\phantom{9}}\\\phantom{18)}170\\\end{array}
Use the 3^{rd} digit 0 from dividend 350
\begin{array}{l}\phantom{18)}019\phantom{6}\\18\overline{)350}\\\phantom{18)}\underline{\phantom{}18\phantom{9}}\\\phantom{18)}170\\\phantom{18)}\underline{\phantom{}162\phantom{}}\\\phantom{18)99}8\\\end{array}
Find closest multiple of 18 to 170. We see that 9 \times 18 = 162 is the nearest. Now subtract 162 from 170 to get reminder 8. Add 9 to quotient.
\text{Quotient: }19 \text{Reminder: }8
Since 8 is less than 18, stop the division. The reminder is 8. The topmost line 019 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}