Evaluate
\frac{350}{13}\approx 26.923076923
Factor
\frac{2 \cdot 5 ^ {2} \cdot 7}{13} = 26\frac{12}{13} = 26.923076923076923
Share
Copied to clipboard
\begin{array}{l}\phantom{13)}\phantom{1}\\13\overline{)350}\\\end{array}
Use the 1^{st} digit 3 from dividend 350
\begin{array}{l}\phantom{13)}0\phantom{2}\\13\overline{)350}\\\end{array}
Since 3 is less than 13, use the next digit 5 from dividend 350 and add 0 to the quotient
\begin{array}{l}\phantom{13)}0\phantom{3}\\13\overline{)350}\\\end{array}
Use the 2^{nd} digit 5 from dividend 350
\begin{array}{l}\phantom{13)}02\phantom{4}\\13\overline{)350}\\\phantom{13)}\underline{\phantom{}26\phantom{9}}\\\phantom{13)9}9\\\end{array}
Find closest multiple of 13 to 35. We see that 2 \times 13 = 26 is the nearest. Now subtract 26 from 35 to get reminder 9. Add 2 to quotient.
\begin{array}{l}\phantom{13)}02\phantom{5}\\13\overline{)350}\\\phantom{13)}\underline{\phantom{}26\phantom{9}}\\\phantom{13)9}90\\\end{array}
Use the 3^{rd} digit 0 from dividend 350
\begin{array}{l}\phantom{13)}026\phantom{6}\\13\overline{)350}\\\phantom{13)}\underline{\phantom{}26\phantom{9}}\\\phantom{13)9}90\\\phantom{13)}\underline{\phantom{9}78\phantom{}}\\\phantom{13)9}12\\\end{array}
Find closest multiple of 13 to 90. We see that 6 \times 13 = 78 is the nearest. Now subtract 78 from 90 to get reminder 12. Add 6 to quotient.
\text{Quotient: }26 \text{Reminder: }12
Since 12 is less than 13, stop the division. The reminder is 12. The topmost line 026 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 26.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}