Solve for x
x=\frac{3\sqrt{5595}}{35}+\frac{27}{7}\approx 10.26854851
x=-\frac{3\sqrt{5595}}{35}+\frac{27}{7}\approx -2.554262796
Graph
Share
Copied to clipboard
35x^{2}-270x-918=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-270\right)±\sqrt{\left(-270\right)^{2}-4\times 35\left(-918\right)}}{2\times 35}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 35 for a, -270 for b, and -918 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-270\right)±\sqrt{72900-4\times 35\left(-918\right)}}{2\times 35}
Square -270.
x=\frac{-\left(-270\right)±\sqrt{72900-140\left(-918\right)}}{2\times 35}
Multiply -4 times 35.
x=\frac{-\left(-270\right)±\sqrt{72900+128520}}{2\times 35}
Multiply -140 times -918.
x=\frac{-\left(-270\right)±\sqrt{201420}}{2\times 35}
Add 72900 to 128520.
x=\frac{-\left(-270\right)±6\sqrt{5595}}{2\times 35}
Take the square root of 201420.
x=\frac{270±6\sqrt{5595}}{2\times 35}
The opposite of -270 is 270.
x=\frac{270±6\sqrt{5595}}{70}
Multiply 2 times 35.
x=\frac{6\sqrt{5595}+270}{70}
Now solve the equation x=\frac{270±6\sqrt{5595}}{70} when ± is plus. Add 270 to 6\sqrt{5595}.
x=\frac{3\sqrt{5595}}{35}+\frac{27}{7}
Divide 270+6\sqrt{5595} by 70.
x=\frac{270-6\sqrt{5595}}{70}
Now solve the equation x=\frac{270±6\sqrt{5595}}{70} when ± is minus. Subtract 6\sqrt{5595} from 270.
x=-\frac{3\sqrt{5595}}{35}+\frac{27}{7}
Divide 270-6\sqrt{5595} by 70.
x=\frac{3\sqrt{5595}}{35}+\frac{27}{7} x=-\frac{3\sqrt{5595}}{35}+\frac{27}{7}
The equation is now solved.
35x^{2}-270x-918=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
35x^{2}-270x-918-\left(-918\right)=-\left(-918\right)
Add 918 to both sides of the equation.
35x^{2}-270x=-\left(-918\right)
Subtracting -918 from itself leaves 0.
35x^{2}-270x=918
Subtract -918 from 0.
\frac{35x^{2}-270x}{35}=\frac{918}{35}
Divide both sides by 35.
x^{2}+\left(-\frac{270}{35}\right)x=\frac{918}{35}
Dividing by 35 undoes the multiplication by 35.
x^{2}-\frac{54}{7}x=\frac{918}{35}
Reduce the fraction \frac{-270}{35} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{54}{7}x+\left(-\frac{27}{7}\right)^{2}=\frac{918}{35}+\left(-\frac{27}{7}\right)^{2}
Divide -\frac{54}{7}, the coefficient of the x term, by 2 to get -\frac{27}{7}. Then add the square of -\frac{27}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{54}{7}x+\frac{729}{49}=\frac{918}{35}+\frac{729}{49}
Square -\frac{27}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{54}{7}x+\frac{729}{49}=\frac{10071}{245}
Add \frac{918}{35} to \frac{729}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{27}{7}\right)^{2}=\frac{10071}{245}
Factor x^{2}-\frac{54}{7}x+\frac{729}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{27}{7}\right)^{2}}=\sqrt{\frac{10071}{245}}
Take the square root of both sides of the equation.
x-\frac{27}{7}=\frac{3\sqrt{5595}}{35} x-\frac{27}{7}=-\frac{3\sqrt{5595}}{35}
Simplify.
x=\frac{3\sqrt{5595}}{35}+\frac{27}{7} x=-\frac{3\sqrt{5595}}{35}+\frac{27}{7}
Add \frac{27}{7} to both sides of the equation.
x ^ 2 -\frac{54}{7}x -\frac{918}{35} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 35
r + s = \frac{54}{7} rs = -\frac{918}{35}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{27}{7} - u s = \frac{27}{7} + u
Two numbers r and s sum up to \frac{54}{7} exactly when the average of the two numbers is \frac{1}{2}*\frac{54}{7} = \frac{27}{7}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{27}{7} - u) (\frac{27}{7} + u) = -\frac{918}{35}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{918}{35}
\frac{729}{49} - u^2 = -\frac{918}{35}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{918}{35}-\frac{729}{49} = -\frac{10071}{245}
Simplify the expression by subtracting \frac{729}{49} on both sides
u^2 = \frac{10071}{245} u = \pm\sqrt{\frac{10071}{245}} = \pm \frac{\sqrt{10071}}{\sqrt{245}}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{27}{7} - \frac{\sqrt{10071}}{\sqrt{245}} = -2.554 s = \frac{27}{7} + \frac{\sqrt{10071}}{\sqrt{245}} = 10.269
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}