Solve for x
x=\frac{\sqrt{37}-7}{10}\approx -0.091723747
x=\frac{-\sqrt{37}-7}{10}\approx -1.308276253
Graph
Share
Copied to clipboard
25x^{2}+35x+5=2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
25x^{2}+35x+5-2=2-2
Subtract 2 from both sides of the equation.
25x^{2}+35x+5-2=0
Subtracting 2 from itself leaves 0.
25x^{2}+35x+3=0
Subtract 2 from 5.
x=\frac{-35±\sqrt{35^{2}-4\times 25\times 3}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, 35 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-35±\sqrt{1225-4\times 25\times 3}}{2\times 25}
Square 35.
x=\frac{-35±\sqrt{1225-100\times 3}}{2\times 25}
Multiply -4 times 25.
x=\frac{-35±\sqrt{1225-300}}{2\times 25}
Multiply -100 times 3.
x=\frac{-35±\sqrt{925}}{2\times 25}
Add 1225 to -300.
x=\frac{-35±5\sqrt{37}}{2\times 25}
Take the square root of 925.
x=\frac{-35±5\sqrt{37}}{50}
Multiply 2 times 25.
x=\frac{5\sqrt{37}-35}{50}
Now solve the equation x=\frac{-35±5\sqrt{37}}{50} when ± is plus. Add -35 to 5\sqrt{37}.
x=\frac{\sqrt{37}-7}{10}
Divide -35+5\sqrt{37} by 50.
x=\frac{-5\sqrt{37}-35}{50}
Now solve the equation x=\frac{-35±5\sqrt{37}}{50} when ± is minus. Subtract 5\sqrt{37} from -35.
x=\frac{-\sqrt{37}-7}{10}
Divide -35-5\sqrt{37} by 50.
x=\frac{\sqrt{37}-7}{10} x=\frac{-\sqrt{37}-7}{10}
The equation is now solved.
25x^{2}+35x+5=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
25x^{2}+35x+5-5=2-5
Subtract 5 from both sides of the equation.
25x^{2}+35x=2-5
Subtracting 5 from itself leaves 0.
25x^{2}+35x=-3
Subtract 5 from 2.
\frac{25x^{2}+35x}{25}=-\frac{3}{25}
Divide both sides by 25.
x^{2}+\frac{35}{25}x=-\frac{3}{25}
Dividing by 25 undoes the multiplication by 25.
x^{2}+\frac{7}{5}x=-\frac{3}{25}
Reduce the fraction \frac{35}{25} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{7}{5}x+\left(\frac{7}{10}\right)^{2}=-\frac{3}{25}+\left(\frac{7}{10}\right)^{2}
Divide \frac{7}{5}, the coefficient of the x term, by 2 to get \frac{7}{10}. Then add the square of \frac{7}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{5}x+\frac{49}{100}=-\frac{3}{25}+\frac{49}{100}
Square \frac{7}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{5}x+\frac{49}{100}=\frac{37}{100}
Add -\frac{3}{25} to \frac{49}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{10}\right)^{2}=\frac{37}{100}
Factor x^{2}+\frac{7}{5}x+\frac{49}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{10}\right)^{2}}=\sqrt{\frac{37}{100}}
Take the square root of both sides of the equation.
x+\frac{7}{10}=\frac{\sqrt{37}}{10} x+\frac{7}{10}=-\frac{\sqrt{37}}{10}
Simplify.
x=\frac{\sqrt{37}-7}{10} x=\frac{-\sqrt{37}-7}{10}
Subtract \frac{7}{10} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}