Solve for t
t = \frac{5}{2} = 2\frac{1}{2} = 2.5
Share
Copied to clipboard
35t=50t+50\left(-\frac{3}{4}\right)
Use the distributive property to multiply 50 by t-\frac{3}{4}.
35t=50t+\frac{50\left(-3\right)}{4}
Express 50\left(-\frac{3}{4}\right) as a single fraction.
35t=50t+\frac{-150}{4}
Multiply 50 and -3 to get -150.
35t=50t-\frac{75}{2}
Reduce the fraction \frac{-150}{4} to lowest terms by extracting and canceling out 2.
35t-50t=-\frac{75}{2}
Subtract 50t from both sides.
-15t=-\frac{75}{2}
Combine 35t and -50t to get -15t.
t=\frac{-\frac{75}{2}}{-15}
Divide both sides by -15.
t=\frac{-75}{2\left(-15\right)}
Express \frac{-\frac{75}{2}}{-15} as a single fraction.
t=\frac{-75}{-30}
Multiply 2 and -15 to get -30.
t=\frac{5}{2}
Reduce the fraction \frac{-75}{-30} to lowest terms by extracting and canceling out -15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}